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1 Introduction

In this paper we study a class of random utility models that allows for horizontal product
differentiation to enter an otherwise purely vertically differentiated market. The model
generalizes the standard random coefficient model by allowing for consumer heterogeneity
to interact with a product j’s unobserved attribute ξj. We seek to establish three basic
results concerning this model that is relevant for empirical work. First, the discrete choice
demand literature to date allows for heterogeneous preferences on observed characteristics,
but not on unobserved characteristics. This is potentially problematic, as in empirical
settings much of demand loads on unobserved product quality. Allowing for heterogeneous
preferences over this unobserved quality (which might represent reliability, marketing, style,
or other unmeasured product characteristics) thus has an obvious economic interpretation
which is useful for the purposes of measuring product quality and demand. Second, a
key issue in generalizing the model in this way is that the standard computation method,
following Berry (1994) and Berry, Levinsohn and Pakes (1995) (henceforth BLP), does not
apply to this model, as the conditions under which the proposed mapping is a contraction
are no longer generally satisfied. Third, we build on work by Berry, Gandhi and Haile (2013)
(henceforth BGH) and Berry and Haile (2014) (henceforth BH) and establish conditions
under which the generalized model is both identified and has a globally convergent solution
method.

To keep this draft short, we’ve omitted most of the formal proofs, some of the interme-
diate derivations, and do not formally describe that notation which is otherwise standard
in random coefficient models of demand. These elements will appear in the full paper.
This draft represents an early work in progress, so our current empirical/computational
results are limited to preliminary Monte Carlo exercises. We are currently working on
expanding these Monte Carlo results as well as applying the generalized framework/esti-
mator to several micro data sets in which we believe marketing and other unobservable
product characteristics play an important role in demand. We expect to have preliminary
expanded results within a month.
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2 The Model

For simplicity, we consider a linear in random coefficients utility model1

uij = xjβi − αpj + λiξj + εij (1)

where (xj, ξj) ∈ RK ×R is product j’s vector of characteristics and (βi, λi) is consumer i’s
vector of random coefficients which characterize consumer i’s tastes over a product’s char-
acteristics. The preference shock, εij, is a standardized type-I extreme value shock which is
independent of the random coefficients and across the set of products j ∈ J = {0, 1, . . . , J}.
A market is then defined by (J ,X ), with the product and market characteristics repre-
sented by X = (x, p, ξ) ∈ RKJ × RJ × RJ .

3 Identification and Computation

There are two key problems we need to solve in order to estimate the model described
by (1). The first is to establish conditions under which the model (and in particular, ξ)
is identified. We generally follow the identification and invertibility conditions outlined
in BGH and BH. The second problem is computational, as we can no longer use the
Berry/BLP contraction to recover ξ. To solve this, we establish conditions under which
there exist globally convergent methods for recovering the unique vector of ξj terms in each
market.

3.A The Computational Problem

Let ŝ(δ) = (ŝ0(δ), . . . , ŝJ(δ)) denote the vector of predicted shares in a market for any
vector of mean utilities δ ∈ RJ of the inside goods. Given the observed market shares
s ∈ RJ+1 where sj > 0 for all j and

∑
j sj = 1, BLP propose iterating the mapping

f(δ) = δ + ln(s)− ln(ŝ(δ)) (2)

to solve ŝ(δ) = s. Their argument is based on showing that f is a contraction mapping with
modulus strictly less than 1 over a certain domain. Unfortunately, in the case of (1), the
mapping (2) is no longer a contraction and consequently does not converge to the solution.
This can be readily confirmed in practice. The theoretical source of the problem is the fact
that a product’s “own demand” can now become more responsive to “own quality” when
a random coefficient λi is allowed to interact with ξj. To see the issue more formally, recall
that a key condition for f to be a contraction is that ∂fj(δ)/∂δj > 0 for all products j > 0.
Of course,

∂fj(δ)

∂δj
= 1− 1

ŝ(δ)

∂ŝ(δ)

∂δj

1With the notable exception of Das, Olley and Pakes (1994), all existing empirical work which utilizes
the mixed logit form of (1) restricts λi = 1 (i.e., no heterogeneity in the random coefficient on the
unobservable).
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and since ŝj < 1, the condition requires that ∂ŝ/∂δj > 0 be sufficiently small, i.e., that
own demand is not “too responsive” to own quality. However, this requirement need not
be satisfied in the model with a random coefficient on quality.

3.B A Solution

We now propose an alternative computational solution that can be used to estimate the
model (1). First let us establish some notation. Let S be the J + 1 dimensional sim-

plex, and let S∗ denote the interior of S. Partition xj as (x
(1)
j , x

(2)
j ), with x

(1)
j ∈ R. Let

x(1) = (x1((1)), . . . , x
(1)
J ) and x(2) = (x1((2)), . . . , x

(2)
J ). Define δj = x

(1)
j + ξj and let

δ = (δ1, . . . , δJ). The model (1) gives rise to a demand system σ : RJ → S that maps any
vector of qualities ξ = (ξ1, ..., ξJ) over the J inside goods to a vector of market shares. We
observe a particular vector of market shares s ∈ S∗, and seek to solve the system s = σ(ξ)
in the underlying qualities ξ2. It is straightforward to show that demand derived from the
model (1) satisfies the following properties:

Assumption 1. σ : RJ → S∗ and is continuous.

Assumption 2. For any j > 0, σj(ξj, ξ−j) is strictly increasing in ξj and approaches 1 as
ξj →∞ and approaches 0 as ξj → −∞.

Assumption 3. For any k 6= j, σk(ξj, ξ−j) is non-increasing in ξj.

Assumption 4. For any ξ ∈ RJ and any nonempty K ⊆ {1, . . . , J}, there exist k ∈ K
and ` /∈ K such that σ`(ξ) is strictly decreasing in ξk.

Assumption 5. Fu(·|X ) = Fu
(
·|δ, x(2), p

)
, where Fu(ui1, . . . , uiJ |X ) is the conditional

joint distribution of consumer utility, which is i.i.d across consumers and markets.

Note that assumptions 2-4 are equivalent to the condition that goods (0, 1, . . . , J) are
connected substitutes in ξ as defined in BGH and BH. Assumption 5 is a restatement
of the index restriction from BH. Assumption 1 follows from the fact that the assumed
extreme value distribution on εij for j ≥ 0 is continuous and has full support over R.
Assumption 2 follows from the additively separable nature of λiξj term in preferences.
Assumption 3 follows from the discrete choice nature of demand, which rules out the
products being complements. Assumption 4 was introduced by BGH as a general property
of demand models and the inclusion of the εij ensures that it holds (see their paper for
various interpretations of the condition). To satisfy assumption 5, we will impose that
λi = βik ∀ i, for some observable characteristic k ∈ {1, . . . , Kx}.

The ultimate goal is to solve the system s = σ(ξ). Define φ : RJ → RJ as φ(ξ) ≡
σ(ξ)− s. We now establish an important key property concerning φ.

2Note that σ(ξ) is more properly written σ(ξ; θ, x, p, s), but we suppress the (θ, x, p, s) to simplify
notation.
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Definition 3.1. A mapping F : D ⊂ Rj → RJ is an M-function if it is inverse isotone and
off-diagonally antitone.

Lemma 3.1. The mapping φ is a continuous, surjective, M-function.

Proof. Demand function σ (and thus φ) is continuous by construction and surjective under
assumptions 1-3 following the existence argument in the Appendix of Berry (1994). Under
assumptions 2-4, theorem 1 in BGH shows that φ is inverse isotone. Mapping φ is also
off-diagonally antitone by assumption 3.

The next theorem is a restatement of Theorem 3.3 in Rheinboldt (1970) and proves that
the Gauss-Seidel and Gauss-Jacobi processes applied to our demand mapping φ computes
the unique solution (ξ∗) in a globally convergent way.

Theorem 3.2. Let F : Rn → Rn be a continuous, surjective M-function, and ε ∈ (0, 1]
a given number. Then for any z ∈ Rn, any starting point x0 ∈ Rn, and any sequence
{ωk} ∈ [ε, 1] of relaxation factors, the Gauss-Seidel process as well as the Jacobi process
converge to the unique solution x∗ of Fx = z.

4 Computation

We estimate the model using a nested fixed point approach similar to that employed by
BLP. Define θ0 ∈ RKθ to be the vector of true mean and distributional parameters, com-
mon across individuals and markets. Then given the above assumptions, for a particular
parameter guess θ there exists a unique vector ξ∗ which solves the J-dimensional equation
φ(ξ) = 0. By theorem 3.2, we know that one globally convergent method of solving for ξ∗

is the Gauss-Seidel method, defined as iterating over:

Solve: φj(ξ
m+1
1 , ..., ξm+1

j−1 , ξj, ξ
m
j+1, ..., ξ

m
J ) = 0 for ξj.

Update: ξm+1
j = (1− ωm)ξmj + ωmξj

where {ωm} ⊂ (0, 1],m = 0, 1, ... is any sequence of relaxation factors. This process
can be very slow, so we also employ a variant of Newton’s Method for finding the root of
a vector-valued function, defined as iterating over:

ξm+1 = ξm − γmφξ(ξm)−1φ(ξm) = ξm − γm∆m

where φξ(ξ
m) is the J × J Jacobian matrix for φ and γm = (1 + 10 ∗ max(|∆m|))−1 is a

”smart” softening factor. In practice, our algorithm first employs Newton’s Method, and
switches to the guaranteed but slower Gauss-Seidel if it detects a problem.

To deal with objective functions which may have many local minima, we develop a
global search algorithm which we use when estimating θ ∈ RKθ . The algorithm is as
follows. Select initial trust region Θ∗ ⊂ RKθ where Θ∗ is a Kθ-dimensional hypercube.
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Evaluate L initial guesses, where each parameter guess θ̃` is drawn from a Sobol sequence
defined on Θ∗. Choose N̄ best guesses, ordered {θ̂1, .., θ̂N̄}, and start the search algorithm
(Nelder Mead etc) at θ̂1, giving initial best guess θ∗1. Iteratively update θ∗n by restarting
the search at rnθ

∗
n−1 + (1− rn)θ̂n, where rn ∈ (rn−1, 1], until convergence.

5 Monte Carlo Exercise and Results

We examine the performance of our estimator using Monte Carlo studies in a simple
oligopoly demand/supply equilibrium setting. Since cost/demand parameters are con-
stant across the M otherwise independent markets, we suppress the market subscript t
to simplify notation. Every market contains a set N of multi-product firms which each
produce Jf goods. Let J denote the set of goods offered in a particular market. Firm f
sets prices to maximize profits, defined as

πf = max
pf

Jf∑
j

(pfj −mcfj)qfj(p)

where pf is firm f ’s vector of prices, p = {pf}f∈N is the set of equilibrium prices in that
market, and marginal costs are

mcfj = γwfj + ζfj

Here, γ is a vector of cost function coefficients common across firms, goods, and markets,
wfj ∼ U|0,1| is a vector of observed product-level cost shifters and ζfj ∼ U|−1/2,1/2| is an
unobserved cost shock. Demand is derived from a simple version of the indirect utility
function considered above with only one observed demand shifter, where for customer i,

uij = β0 + βi1(xj1 + ξj)− αpj + εij, βi1 ∼ N(β1, σ
2
1) (3)

We set xj1 ∼ U|1,3| and ξj ∼ U|−1/2,1/2|. The true demand parameter values are (α, β0, β1, σ1) =
(5, 0, 3, 3). We generate the data with M = 100, M = 500 and M = 5000 in order to ex-
amine both small sample performance and the consistency of our estimator. Every market
has two firms, each with a random number Jf ∈ {2, 3} of products.

For now we perform two main exercises. First we estimate the model using our es-
timator. Second, we naively estimate the model using the BLP estimator, ignoring the
random coefficient on ξj

3. This gives us both an idea of our estimator’s performance, and
the bias that might result in frameworks which erroneously restrict λi = 1. In both cases
we use two-step GMM with BLP instruments and report the standard errors based on 200
replications of the estimates (using 200 different data sets).

The Monte Carlo results are displayed in table (1). Our estimator (which we label
“CGP”’) is consistent and clearly converges to the true parameter values as the number
of markets M increases. The BLP estimator where λj is restricted to 1 is clearly biased.

3Note that we cannot test the bias/performance of the BLP estimator on the true model for the reasons
detailed above.
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The random coefficient βi1 in particular is biased significantly downwards. This suggests
that allowing for a random coefficient on ξj may be important for calculating own and
cross-price elasticities. As mentioned above, our next step is to test how important by
taking our estimator to the BLP automobile data, as well as several other micro data sets
in which we believe unobservable product characteristics play an important role in demand.

Table 1: Preliminary Monte Carlo Experiment Results
Parameters True CGP BLP

Alpha (α) 5.000 4.979 4.996 5.000 4.910 4.940 4.941
(0.535) (0.239) (0.076) (0.566) (0.253) (0.079)

Beta 0 (β0) 0.000 0.062 0.016 0.007 0.003 0.061 0.085
(1.032) (0.462) (0.146) (1.112) (0.497) (0.157)

Beta 1 (β1) 3.000 3.010 3.000 3.000 2.882 2.879 2.820
(0.094) (0.041) (0.013) (0.124) (0.054) (0.017)

Sigma 1 (σ1) 3.000 2.987 2.999 2.999 2.867 2.862 2.853
(0.309) (0.137) (0.043) (0.349) (0.156) (0.048)

Markets 100 500 5000 100 500 5000
Mean Obj. Value 3.074 2.978 3.291 3.002 3.105 5.283
Replications 200 200 200 200 200 200

Performance
AVG Time (mins) 0.5 0.9 10.1 3.0 5.4 53.2
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