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Abstract

Do larger firms have more productive technologies or are their technolo-
gies more scalable, or both? We use administrative data on Canadian and US
firms to estimate flexible nonparameteric production functions. Our estima-
tion results in a joint distribution of output elasticities of capital, labor, and
intermediate inputs—therefore, returns to scale (RTS)—along with total factor
productivity (TFP). We find significant heterogeneity in both RTS and TFP
across firms. Larger firms operate technologies with higher RTS, both across
and within industries. Higher RTS for large firms are entirely driven by higher
intermediate input elasticities. Descriptively, these align with higher interme-
diate input revenue shares. We then incorporate RTS heterogeneity into an
otherwise standard incomplete markets model with endogenous entrepreneur-
ship that matches the observed heterogeneity in TFP and RTS. In this model,
we find that the efficiency losses of financial frictions are more than twice as
large relative to the conventional calibration that loads all heterogeneity on
TFP and imposes a common RTS parameter.
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1 Introduction

The large and persistent firm heterogeneity in total factor productivity (TFP)

has been extensively documented within industries and for different countries and

time periods (see Syverson (2011) for an overview). The earlier literature focused on

this dimension of heterogeneity to explain the firm size distribution (at least within

industries). For example, the misallocation literature (pioneered by Restuccia and

Rogerson (2008) and Hsieh and Klenow (2009)) quantified the efficiency costs of dif-

ferences in the marginal product of capital across firms with different TFP (a notable

exception is David and Venkateswaran (2019)). Moreover, models of entrepreneurship

with heterogeneous TFP and decreasing returns to scale production functions have

been used to explain persistent differences in rates of return and wealth inequality

(e.g., Cagetti and De Nardi (2006)).

In this paper, we allow for more general heterogeneity in production technologies

among firms—focusing on differences in returns to scale (RTS)—and investigate how

these differences shape the firm size distribution. We employ a broad set of estimation

methods and use panel data on firms to document significant heterogeneity in produc-

tion technologies across firms. Our benchmark method builds on Gandhi, Navarro

and Rivers (2020) (henceforth GNR), and provides us with a joint distribution of

output elasticities of labor, capital, and intermediate inputs—thereby, RTS—as well

as TFP, at the firm-year level. We then study whether larger firms have technologies

that are more productive (high TFP) or more scalable (high RTS). Finally, we show

why the answer to this question matters in an application to efficiency costs of mis-

allocation from financial frictions, indicating the potential role of RTS heterogeneity

for an array of quantitative questions, such as optimal taxation of capital, firm hiring

decisions (as in Gavazza et al. (2018)) or firm growth and cyclicality (as in Clymo

and Rozsypal (2023)).

In our main empirical analysis, we use administrative panel data for the universe

of incorporated Canadian firms—which account for more than 90% of private business

sector output—from 2001 to 2019 from the National Accounts Longitudinal Microdata

file. This dataset contains firms’ balance sheet information on revenues as well as the

total cost of labor, capital, and intermediate inputs. The measurement of labor and

intermediate inputs is consistent with Statistics Canada’s national accounts, and we
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construct the capital stock for each firm using the perpetual-inventory method (as

standard in the literature). After sample selection, our sample includes 4.3 million

firm-year observations. We also corroborate our main findings from Canada with

similar empirical results for manufacturing firms in the US using administrative data

from the Annual Survey of Manufactures and Economic Census.

In our benchmark approach, we estimate nonparametric production functions

building on the method of GNR.1 This technique leverages standard assumptions

on profit maximization, adjustment costs, and input choice timing to recover firm-

level measures of TFP, output elasticities, and returns to scale. The non-homothetic

production function is identified from variation in input expenditure shares, as well

as from the covariance between in input and output levels, controlling for the en-

dogeneity of inputs to TFP. Intuitively, higher returns-to-scale firms are those with

higher expenditure shares and/or a higher covariance of input and output levels.

We apply the GNR method to each 2-digit NAICS industry, and for each year in

our sample. In addition to considerable heterogeneity in TFP (as the previous litera-

ture also documented), we find large differences in RTS among Canadian firms (even

within industries). The mean of our estimated RTS equals 0.97, with considerable

variation across industries.2 More novel, we document significant variation in RTS

within 2-digit NAICS industries. The average within-industry differential between

the 90th and 10th percentiles (P90-P10) equals 0.07. These differences imply that, for

a given level of TFP, when increasing the input bundle by 1%, the output of the firm

at the 90th percentile increases by 7% more relative to the increase in output of the

firm at the 10th percentile. Interpreted as deviations from constant returns to scale,

these differences are large.3 Furthermore, these differences are mainly due to ex-ante

1In particular, our estimation involves two steps. First, we employ the factor share or first-
order condition approach to nonparametrically identify the output elasticity of the fully flexible
intermediate input, and transitory productivity shocks. In the second step, we use these estimates
to identify the output elasticities of capital and labor along with the persistent TFP shocks by
exploiting dynamic panel (or proxy) variable conditional moment restrictions based on lagged input
decisions.

2A few papers have documented heterogeneity in RTS. For instance, Gao and Kehrig (2017)
reports RTS across different industries in the US. Demirer (2020) finds heterogeneity in output
elasticities and RTS across firms, industries and countries, often with RTS greater than one. None
of these papers, however, look at the relation between RTS, TFP, and firm size within industries.

3E.g., with Cobb-Douglas production functions in an efficient economy, the elasticity of optimal
firm output to firm TFP is 1

1−RTS . This elasticity is 3.3 times larger for a firm with RTS of 0.97
compared to a firm with RTS of 0.90.
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production technology heterogeneity. Using our firm-year level estimates, we run a

panel regression for RTS and find that firm fixed effects account for 86% of the overall

variation after controlling for firm size and age. Thus, while we estimate production

functions at the 2-digit industry-year level, we interpret heterogeneity between firms

as mainly stemming from permanent differences.

The dispersion in the output elasticities of capital, labor, and intermediates is

larger than dispersion in RTS, meaning that firms’ technologies differ both in their

relative factor intensities and in the overall RTS. The P90-P10 of our estimated in-

termediate input elasticity and of the labor elasticity are both equal to 0.35, while

the P90-P10 dispersion of the capital elasticity is lower, at 0.07. The estimated out-

put elasticity patterns align with the corresponding revenue shares of the respective

input. In particular, the intermediate input shares in firm revenue closely mirror the

estimated intermediate input elasticities, which is expected as our estimation treats

them as flexible input. For labor and capital, the correlation between observed rev-

enue shares and estimated elasticities is less than perfect but still strongly positive.

Again, this is expected as these two inputs are potentially subject to adjustment costs

and input market power, and capital is pre-determined.

Next, we investigate the variation in production technologies across the revenue

distribution. Our main empirical finding is that RTS is increasing in firm size, es-

pecially above the median: When pooling firms across the economy we find that, on

average, the largest 5% of firms exhibit RTS that are 10 percentage points (pp) higher

compared to those in the bottom 50%. Similarly, within 2-digit NAICS industries,

the largest 5% firms within industries exhibit RTS that are 8 pp higher compared to

the bottom 50%. When we zoom into the respective output elasticities, we find that

the overall increase in RTS along the revenue distribution is entirely accounted for

by an increase in the output elasticity of intermediate inputs. In contrast, labor and

capital elasticities tend to decline along the revenue distribution, though this finding

is less robust across samples and specifications.

We find that TFP increases in firm revenue until the top 10% of the revenue

distribution, after which it then flattens out. RTS instead increases in a convex

fashion at the top of the revenue distribution, indicating a more important role for

RTS differences in shaping the right tail of the firm revenue distribution. In sum, our
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empirical results indicate that the largest firms tend to feature the highest RTS, and

not necessarily the highest TFP as commonly assumed.

Our results are robust along several dimensions. We find similar results whether

we estimate a production function across the entire economy or within narrow indus-

try groups. Methodologically, our main findings are unchanged when (i) clustering

firms according to input shares and estimating separate production functions within

clusters, (ii) including intangibles in the definition of capital, and (iii) imposing ho-

mogeneous relative factor elasticities while still allowing for RTS differences. Finally,

we also document a positive relation between plant size and RTS in the US manufac-

turing sector.

We also show that high-RTS firms grow faster over the life-cycle and are less likely

to exit, in addition to having a higher output level. Furthermore, high-paying firms

on average feature higher RTS. These secondary findings indicate that incorporating

realistic RTS heterogeneity is important for a wide range of applications, including

wage inequality.

Finally, we link firms to their owners. Many models of wealth inequality (building

on Quadrini (2000); Cagetti and De Nardi (2006)) feature entrepreneurs that operate

production technologies with heterogeneous TFP but common (and decreasing) RTS.

Hence, in these models, the right tail of the wealth distribution is populated by

households operating the highest TFP technologies. Testing this assumption, we

first document that wealthier households invest in firms with higher RTS. Second,

firm TFP increases with owner wealth, but flattens out at the top of the wealth

distribution, where RTS increases even more steeply. These findings suggest that

wealthier households tend to invest in firms with high RTS (i.e., in more scalable

technologies), and not necessarily in high-TFP firms as commonly assumed; therefore,

they have important implications for the optimal taxation of wealth and income from

wealth (e.g., Guvenen et al. (2023); Gaillard and Wangner (2021)).

To investigate the implications of our findings, we incorporate heterogeneous RTS

into a standard incomplete markets heterogeneous agents model with endogenous en-

trepreneurship (e.g., Quadrini (2000); Cagetti and De Nardi (2006)). In the model,

agents have an occupational choice between supplying their stochastic efficiency units

of labor or operating a private business. The private business technology is stochastic.
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Inputs choices are constrained by a friction λ such that, for each dollar spent on in-

puts, the entrepreneur needs to finance at least a fraction λ with their private wealth.

More novel, an entrepreneur’s output depends not only on a standard stochastic id-

iosyncratic TFP term z, but also on a stochastic idiosyncratic RTS term η. We then

investigate the output and productivity effects of changing the financial conditions

in this economy. That is, we evaluate the impact of raising λ from zero—the uncon-

strained case—to positive values all the way up to one—the fully constrained case

where all expenditures have to be financed with the owner’s equity.

Our main exercise compares the effects of increasing the friction λ in two economies:

the conventional z-economy, where there is no variation in η and which fundamentally

loads all heterogeneity on TFP, and the (η, z)-economy, which features the observed

joint distribution of RTS and TFP that we estimate in our empirical work. We

calibrate the two economies such that they agree on key observable moments; in

particular, both economies feature the same firm size distribution.

Our main finding is that in the (η, z)-economy, financial frictions generate more

than double the output losses relative to the z-economy. Static misallocation of pro-

duction factors accounts for the majority of output losses in both economies, and is

about twice as large in the (η, z)-economy compared to the z-economy. To provide

intuition, we derive an analytical result in a static endowment economy. We show

that a given marginal input product wedge translates into more misallocation if the

constrained firms have relatively higher RTS—a feature that our dynamic model gen-

erates endogenously. Dynamic effects also lead to more output losses in the economy

with RTS heterogeneity, both because of underaccumulation of capital and because

the selection intro entrepreneurship is relatively more distorted. If a potential super-

star (but currently poor) entrepreneur has a business idea that is highly productive

(i.e., has a high z), then her business is already profitable even at a small scale, and

it is relatively easier to outgrow the friction. Instead, if the business idea is highly

scaleable (i.e., high η), but not necessarily profitable at a small scale, it is harder

to outgrow the friction, and she might never enter entrepreneurship.4 Given these

results, we conclude that taking into account RTS heterogeneity is crucial for a broad

set of quantitative questions related to misallocation such as wealth inequality and

4Some entrepreneurs have a high z but a low η, and hence a smaller optimal scale. This can
explain why some entrepreneurs do not expect to grow their firms as in Hurst and Pugsley (2011).
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optimal taxation of capital.5

2 Empirical Methodology

2.1 Estimating Returns to Scale

Our main empirical approach builds on the production function estimation method-

ology developed by GNR. We use a slightly modified GNR procedure to estimate a

flexible non-parametric revenue production function which allows us to recover firm

and time-varying measures of total factor productivity (TFP) and returns to scale

(RTS). This production function relates each firm-year pair’s output Yjt to its inputs,

including capital stock Kjt, labor input Ljt, and intermediate inputs Mjt, with the

following assumption:

Assumption 1. The firm’s production function takes the following general form in

levels Yjt = F (Kjt, Ljt,Mjt)e
νjt and in logs yjt = f(kjt, `jt,mjt) + νjt where f is

a continuous and differentiable function which is strictly concave in mjt and νjt is

Hicks-neutral productivity.

The traditional challenge in the production function estimation literature is how to

separate productivity shocks that affect firm’s output from input choices. Following

GNR, we use the first-order conditions of the firm as well as timing assumptions on

the nature of productivity and input choices to form moment conditions. We illustrate

the details below.

The estimation technique of GNR provides several advantages relative to other

more standard methods. First, it offers a robust estimation method of gross produc-

tion functions which is important if we want to obtain precise estimates of output

elasticities and thus returns to scale. Second, the non-parametric identification strat-

egy minimizes specification error when measuring both input elasticities and the pro-

ductivity term which is crucial if we aim to understand the relation between firm-level

productivity, returns to scale, and firm size.

Following the literature, we rely on standard timing assumptions to identify the

parameters of the firm production function. Define Ijt as the information set available

5E.g., in ongoing work we study the entrepeneurial activity of New Money and Old Money
households (à la Hubmer et al. (2024)), focusing on differences in their production technologies.
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to firm j when it enters period t. Ijt contains all the information relevant to the firm

(i.e., firm productivity, current capital stock, and so on) when it makes its period-t

decisions. Following GNR, we define any input Xt ∈ Ijt as predetermined. Any such

input is thus a function of the previous period’s information set: Xt(Ijt−1). We will

treat capital as a predetermined input. Inputs which are not predetermined (and

thus are set in period t) we define as variable. We define any input which is variable

and where the optimal choice of Xt is a function of lagged values of itself as dynamic.

We will depart from GNR in assuming that labor is a dynamic input. Finally, we

define an input which is variable but not dynamic as flexible. Intermediate inputs

will be treated as flexible in our framework. This implies that both Kjt and Lj,t−1

are elements of Ijt, but Ljt and Mjt are not.

Assumption 2. Capital (Kjt ∈ Ijt) is predetermined and a state variable. Labor

input (Ljt /∈ Ijt) is dynamic, such that Ljt−1 ∈ Ijt is a state variable. Intermediate

inputs (Mjt /∈ Ijt) are flexible, so that Mjt−1 /∈ Ijt.

The Hicks-neutral productivity term νjt can be decomposed into a persistent com-

ponent, ωjt, which is known to the firm when it makes input decisions, and a transitory

component, εjt, which is unknown to the firm when making input decisions in period

t. Notice, the changes in the productivity terms can be due to both technology shocks

and market demand shifts.

Assumption 3. The permanent productivity component, ωjt ∈ Ijt, is observed by the

firm prior to making period-t decisions and is first-order Markov, such that E[ωjt|Ijt−1] =

E[ωjt|ωjt−1] = h(ωjt−1) for some continuous function h(.). The purely transitory pro-

ductivity innovation, εjt /∈ Ijt, is i.i.d. across firms and time and it is not observed

by the firm prior to making period-t decisions, with Pε(εjt|Ijt) = Pε(εjt).

We normalize E[εjt] = 0 and define ξjt = ωjt−E[ωjt|ωjt−1] implying E[ξjt|Ijt−1] =

0.

Assumption 4. We assume that demand for intermediate input mjt = M(kjt, `jt, ωjt)

is strictly monotone in ωjt.

Note that this conditional (on period-t labor) demand function is critical in identi-

fying the production function while allowing labor to be a dynamic (and not predeter-
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mined) input. We also make the following assumption about firm’s profit maximizing

behavior and environment:

Assumption 5. Firms maximize short-run expected profits and are price takers in

both output and intermediate input markets. Denote the common output price index

for period t as Pt and the common intermediate price index as ρt.

Following GNR, the assumptions 1 to 5 give us the following first-order condition

for the firm’s profit maximization problem in period t with respect to Mjt:

Pt
∂

∂Mjt

F (Kjt, Ljt,Mjt)e
ωjtE = ρt,

where E ≡ E[eεjt ] is a constant. Multiplying both sides by Mjt/Yjt, plugging in the

production function, and rearranging provides our first estimating equation:

sjt = ln E + lnD(kjt, `jt,mjt)− εjt
≡ ln(DE(kjt, `jt,mjt))− εjt (1)

where sjt ≡ ln(ρtMjt/PtYjt) is the log revenue share of intermediate input expenditure

and D(kjt, `jt,mjt) ≡ ∂
∂mjt

f(kjt, `jt,mjt) is the output elasticity of materials. Since

by assumption 3 we have E[εjt] = 0, we can use equation 1 to identify εjt and DE .

Given εjt = ln
(
DE(kjt, `jt,mjt)

)
− sjt, we can identify the constant E , which

subsequently provides the elasticity D(kjt, `jt,mjt) = DE(kjt, `jt,mjt)/E . Once we

know D(kjt, `jt,mjt) and εjt, we can integrate the elasticity up, to estimate the rest

of the production function non-parametrically.6 In particular we have

D(kjt, `jt,mjt) ≡
∫

∂

∂mjt

f(kjt, `jt,mjt)dmjt = f(kjt, `jt,mjt)− Ψ(kjt, `jt) (2)

Define ỹjt ≡ yjt− εjt−D(kjt, `jt,mjt) = Ψ(kjt, `jt) +ωjt. Plugging in the structure of

ωjt from assumption 3, we get our second estimating equation:

ỹjt = Ψ(kjt, `jt) + h(ỹjt−1 − Ψ(kjt−1, `jt−1)) + ξjt (3)

6This result requires one further technical assumption on the support of (kjt, `jt) – see Assump-
tion 5 in GNR.
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where ỹjt is observable given the first-stage estimates of εjt and D(kjt, `jt,mjt). Our

assumptions on the firm’s information set give us E[ξjt|kjt, `jt−1, kjt−1, ỹjt−1, `jt−2] = 0,

which we use with equation 3 to identify Ψ, h, and thus ξjt.
7

Our estimation procedure follows GNR in using a standard sieve-series estimator

to non-parametrically identify the input elasticities and production function. We

proceed in two steps. First, we estimate equation 1 with a complete second-degree

polynomial in kjt, `jt, and mjt using nonlinear least squares. This estimator solves

min
γ′

∑
j,t

ε2
jt =

∑
j,t

[
sjt − ln

( ∑
rk+r`+rm≤2

γ
′

rk,r`,rm
krkjt `

r`
jtm

rm
jt

)]2

(4)

which gives us estimates of ε̂jt and D̂E(kjt, `jt,mjt) =
∑

rk+r`+rm≤2(γ̂
′
rk,r`,rm

krkjt `
r`
jtm

rm
jt ).

We can then recover Ê = E[exp(ε̂jt)] and the input elasticity

D̂(kjt, `jt,mjt) =
∑

rk+r`+rm≤2

(γ̂rk,r`,rmk
rk
jt `

r`
jtm

rm
jt )

where γ̂ ≡ γ̂
′
/Ê . We then integrate the estimated flexible input elasticity to recover

D̂(kjt, `jt,mjt) =
∑

rk+r`+rm≤2

(
mjt

rm + 1
γ̂rk,r`,rmk

rk
jt `

r`
jtm

rm
jt

)

which allows us to recover ˆ̃yjt = yjt − ε̂jt − D̂(kjt, `jt,mjt), that is the component of

output unrelated to variation in intermediate inputs.

In the second step, we estimate equation 3 using GMM, by approximating Ψ(kjt, `jt)

and h(ωjt−1) using complete (separate) second- and third-degree polynomials respec-

tively. Since we can identify both the constant of integration and TFP only up to an

additive constant, we follow GNR in normalizing Ψ to have mean zero, which implies

that the constant of integration will show up in the firm productivity level. This gives

us the following second-stage estimating equation:

ỹjt = −
∑

0<τk+τ`≤2

ατk,τ`k
τk
jt `

τ`
tj +

∑
0≤a≤2

δa

(
ỹjt−1 +

∑
0<τk+τ`≤2

ατk,τ`k
τk
jt−1`

τ`
tj−1

)a

+ ξjt, (5)

7This differs from the moments used by GNR, who assume that labor is predetermined.
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where a is the degree of the polynomial. Since E[ξjt|kjt, `jt−1, Ijt−1] = 0, the only en-

dogenous variable is `jt. Thus we can use functions of the set {kjt, kjt−1, `jt−1,mjt−1, ỹjt−1}
as instruments. In particular, our moments are E[ξjtỹ

a
jt−1] and E[ξjtk

τk
jt `

τ`
jt−1] for all

0 ≤ a ≤ 2 and 0 < τk + τ` ≤ 2, leaving us exactly identified.8 This provides us

with estimates of the production function as well as ω̂jt, ξ̂jt, and ˆ̄ωjt ≡ ĥ(ω̂jt−1).

The estimated production function also provides estimates of the output elasticities

of capital and labor, which combined with the previously estimated output elasticity

for intermediate inputs, gives us a firm-level measure of returns to scale. This is the

specification we use to obtain the main empirical results in the next section.

2.2 Identification and Intuition

While GNR provides a rigorous identification argument for their strategy (and

we defer to them for the details), here we discuss the intuition behind our estimation

results. We use the non-parametric identification strategy of GNR to estimate returns

to scale for two reasons. First, this method allows us to identify the output elasticities

for a gross production function, while other common estimation methods (such as

Ackerberg et al. (2015)) are typically only able to identify value-added production

functions. As we show below, variation in the output elasticity of intermediate inputs

is a key driver of variation in RTS, necessitating identification of the gross production

function to learn about RTS.

Second, the non-parametric approach provided by GNR allows us to estimate

a non-homothetic production function whereby the output elasticities and overall

RTS vary by inputs and input shares, thereby, potentially varying across the firm

size distribution. In particular, we first recover the output elasticity of intermediate

inputs, εYMjt
= εYM(kjt, `jt,mjt), which is a function of input levels through the shape

of the production function. This elasticity is identified from the mean intermediate

expenditure share of revenue, as well as from covariation between expenditure shares

and input levels. Intuitively, if the true underlying production function is Cobb-

Douglas, then the expenditure share will be uncorrelated with input levels and the

output elasticity will be a constant equal to the mean expenditure share. This direct

relationship is implied by the assumption that firms are price-takers in intermediate

8As pointed out by GNR, this implies that the estimator is a sieve-M estimator, which allows
us to do inference treating the polynomials as if they were the true parametric structure.
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input markets and do not face adjustment costs when choosing the level of mjt.

We also allow for adjustment costs for capital and labor, and make no assumptions

about the optimality of either input choice, driving an (unknown) wedge between

expenditure shares and output elasticities. Instead, the output elasticities of cap-

ital εYKjt = εYK(kjt, `jt,mjt), and labor εYLjt = εYL (kjt, `jt,mjt) are identified jointly

from their contribution to the variation in intermediate expenditure shares (e.g.,
∂
∂`jt
D(kjt, `jt,mjt) for labor) and their covariation with (residualized) output (e.g.,

∂
∂`jt

ỹjt). We define the firm’s returns to scale as ηjt = η(kjt, `jt,mjt) = εYKjt + εYLjt +

εYMjt
.9 Thus, in the data, a high RTS firm will be a firm which has a high intermediate

input expenditure share of revenue, or a high correlation between output and capital

and/or labor.10

3 Data and Sample Selection

Our main dataset is the Canadian Employer-Employee Dynamics Database of

Statistics Canada (CEEDD), which is a set of linkable administrative tax files covering

the universe of tax-paying Canadian firms and individuals between 2001 and 2019. We

obtain the balance sheet and income statement information on firms from the National

Accounts Longitudinal Microdata File, which covers all incorporated firms.11 We

use the total revenue and total wage bill variables constructed by Statistics Canada

based on the corresponding corporate tax return line items. These same variables

are used in calculation of the national account system. Therefore, our micro data is

consistent with aggregate measures. We construct total tangible capital by employing

the perpetual-inventory method (PIM), using information on the first book value of

tangible capital observed in the dataset, annual tangible capital investment, and

amortization. Intermediate inputs are calculated as the sum of operating expenses

9While the notation in this section assumes a common production function for all firms, in
practice we allow the production function to vary across different groupings such as detailed industry
and capital-ratio clusters. See Section 4 for details. Conditional on a firm grouping, our procedure
still allows output elasticities and RTS to vary by firms’ input levels.

10Note that due to the non-homotheticity of the production function, these correlations are func-
tions of input levels and thus vary across firms.

11Our CEEDD dataset also covers all unincorporated firms in Canada. Unincorporated firms in
Canada are typically small size businesses owned by self-employed individuals. We do not include
these firms because they do not report capital stock. According to Baldwin and Rispoli (2010),
unincorporated firms account for 9.5% of the total GDP in the economy in 2005, with the share
declining since mid-1990s.
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and costs of goods sold net of capital amortization. We measure the wage bill as

the total worker compensation used to construct the National Account. All nominal

monetary values are converted to 2002 real Canadian dollars.

We link firms to their owners using administrative records from the Shareholder

Information in Corporate Tax Files. In particular, Schedule 50 of T2 form provides

information on shareholders who own at least 10% of shares, the percentage of shares

owned by each shareholder above the 10% threshold, and the type of shares owned

(common or preferred). Statistics Canada also tracks chained ownership by individu-

als (e.g., if individual A owns some shares of firm B and firm B owns some of firm C)

and constructs a dataset of ultimate individual shareholder. We merge the ownership

information and demographic characteristics (i.e., age and gender) to the firm panel

dataset and calculate total equity wealth for each individual, measured as the share

weighted sum of the book value of all holding firms.

To construct the estimation sample, we start from firm-year observations with

non-missing values in total revenue, capital stock, wage bill, intermediate input, and

industry code. For the first few firm-year observations of capital stock the PIM

method relies heavily on the initial available book value. We then further drop the

observations with outlier factor shares. Specifically, we drop firm-year observations

with (i) wage bill-to-revenue ratio below the 1st percentile or above the 99th per-

centile, (ii) wage bill-to-value added ratio below the 1st percentile or above the 99th

percentile, (iii) intermediate input-to-revenue ratio greater than 0.95 or smaller than

0.05, and (iv) capital-to-revenue ratio above the 99.9th percentile. This sample selec-

tion leaves us with 4.3 million firm-year observations and 620 thousand firms with an

average of 6.9 observations per firm. Summary statistics are reported in Table I. 12

US Manufacturing Sector. As a robustness exercise, we perform similar analysis

using data from from the US Economic Census and the Annual Survey of Manufac-

tures (ASM). Our sample considers all manufacturing plants available in the dataset

between 1978 and 2019. We measure (revenue) productivity for all plants with infor-

mation on total value of shipments, real capital stock, wages of plant workers, and

information on intermediate inputs and materials in 2019 US dollars.

12The firm-level distributions of these variables are similar to economy-wide microdata in other
countries. E.g., Chan et al. (2024) find very similar distributions of log revenues and inputs in
administrative data covering the entire Danish private sector.
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Table I – Summary Statistics

Mean Median St.dev P10 P50 P90 P99

Revenue 13.73 13.54 1.39 12.13 13.54 15.60 17.75
Intermediates 13.18 12.99 1.52 11.41 12.99 15.21 17.46
Wage Bill 12.35 12.19 1.30 10.82 12.19 14.07 16.04
Capital Stock 11.29 11.26 1.82 9.02 11.26 13.54 15.97

Note: Table I shows cross-sectional moments of the distribution of log revenues, log intermediate
inputs, log wage bill, and log capital stock. All variables in 2002 Canadian dollars. The total number
of observation is 4.3 million firm-years.

4 Empirical Results

In this section, we apply the GNR method to each of the 23 2-digit NAICS in-

dustries in our Canadian administrative data (see Table OA.3 for a list of these in-

dustries), which provide estimates of output elasticities of inputs for all the firm-year

observations in our sample along with their TFPs. Below, we first present uncondi-

tional moments of these estimated parameters from this pooled sample. We then show

how they vary over the firm size distribution as well as over the life cycle. Although

GNR analytically proves identification for their method, we present the features of

the data that have pronounced effects on our parameter estimates as an informal

identification argument. We further relate our results to wage and wealth inequality

as well as lifecycle growth of firms.

4.1 Unconditional Heterogeneity in Production Technologies

We start by discussing cross-sectional moments of the distribution of firm tech-

nologies. In particular, we first calculate within-industry moments from the distri-

bution of firm-level estimates and then we average across industries. Our results,

shown in Table II, reveal considerable heterogeneity in the estimated productivity,

output elasticities, and returns to scale across firms. Starting with within-industry

TFP differences, we find that the 90th-to-10th percentile gap (P90-P10) of firm-level

TFP is 0.31. This implies that a firm at the 90th percentile produces about 36.2%

more output than the firm at the 10th percentile, with the same inputs and holding

output elasticities constant. This is substantially lower than previous estimates of

productivity dispersion even for narrow 6-digit industries in Canada and the USA,

13



Table II – Distribution of Production Function Estimates

Mean St. dev P10 P50 P90 P99

Panel A: Main Estimates

TFP — 0.16 -1.71 -1.55 -1.40 -1.06

RTS 0.97 0.04 0.93 0.97 1.01 1.07

Panel B: Output Elasticities

Intermediates 0.61 0.14 0.43 0.60 0.79 0.99

Labor 0.33 0.14 0.15 0.33 0.49 0.64

Capital 0.03 0.03 0.00 0.03 0.07 0.12

Panel C: Input Shares

Intermediates 0.61 0.18 0.36 0.61 0.85 0.93

Labor 0.29 0.15 0.11 0.28 0.50 0.72

Capital 0.23 0.48 0.01 0.09 0.51 2.16

Note: Table II shows cross-sectional moments of the distribution of firm-level log TFP, returns to
scale (RTS), and the elasticities of output with respect to Intermediate inputs, labor and capital.
To obtain these estimates, we apply the method of Section 2 within two-digits NAICS and calculate
cross-sectional moment within the same cell. Then we average across all estimated values weighting
by the number of observations in each cell. The total number of observation is 4.3 million firm-years.

which typically find P90-P10 TFP ratios closer to 2 (see for instance, De Loecker

and Syverson (2021) and Syverson (2011)). The difference stems from the use of a

flexible non-parametric production function estimation, and from using the wage bill

as our measure of labor input rather than the number of workers or the total number

of hours (see Fox and Smeets (2011)). Using a similar method, Chan et al. (2024)

estimate TFP for the entire Danish private sector and find a P90-P10 ratio of 0.54.

We find similar results for manufacturing plants in the US.

The average return-to-scale (RTS) is estimated to be 0.97 with a P90-P10 of 0.07.

This implies that with a 1% higher input bundle, the firm at the 90th percentile

produces 7.3% (= e0.07− 1) more output than the firm at the 10th percentile, holding

productivity constant. Interpreted as deviations from constant returns to scale, these

differences are large. For example, with Cobb-Douglas production functions in an

efficient economy, the elasticity of optimal firm output to firm TFP is 1
1−RTS . This

elasticity is 3.3 times larger for a firm with RTS of 0.97 compared to a firm with

14



Table III – Within-Industry Variance of Elasticity Estimates

RTS K-elasticity L-elasticity I-elasticity

Fraction of variation (variance) within industry
2-digit NAICS 23.3% 61.9% 65.9% 72.7%
4-digit NAICS 22.0% 57.8% 58.6% 63.6%

Standard deviation within industry
2-digit NAICS 0.052 0.031 0.152 0.149
4-digit NAICS 0.051 0.030 0.143 0.139

Note: Table III shows the within-industry (NAICS2 and NAICS4) variations for the three output
elasticities and return-to-scale estimates. It includes both the within-industry fraction of total
variance and the within-industry standard deviation.

RTS of 0.90. Around 75% of firms have return-to-scale below 1, that is, they operate

decreasing return-to-scale technologies. Consistent with earlier literature (e.g., Basu

and Fernald (1997); Ruzic and Ho (2023); Gao and Kehrig (2017)) we find large

differences in average RTS across industries (Table OA.3), ranging from 0.59 (for

healthcare) to 1.03 (for Management of Companies and Enterprises). On top of

these large between-industry differences, we further find significant within-industry

variation. For example, average within industry P50-P10 and P90-P50 are around

0.03 and 0.04, respectively. In fact, as shown in Table III, a quarter of the total RTS

variance in our data is accounted for by within-industry differences.

By construction, heterogeneity in RTS is explained by the significant heterogeneity

in estimated output elasticities as shown in Panel B of II. The output elasticity with

respect to intermediate inputs has the highest average value of 0.61, followed by

labor with an average elasticity of 0.33, and capital with an average elasticity of

0.03.13 Moreover, labor and intermediate input elasticities are also more dispersed

across firms, compared to the capital elasticity. For example, the average within

industry P90-P10 for intermediate, labor, and capital inputs are 0.35, 0.35, and 0.07,

respectively. Furthermore, variance decompositions reveal that more than 60% of the

overall variation for each output elasticity is explained by within-industry differences,

meaning that within-industry heterogeneity accounts for a larger fraction of the overall

13We find an elasticity of capital that is much lower than typical estimates. This is because
our measure of capital stock only considers plants, equipment, and buildings (tangible capital) and
ignores any other form of capital such as intangible capital, inventories, cash and so on, which are
included in the aggregate measure of capital.
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Table IV – Correlation of Output Elasticity Estimates

Between-Industry Variation Within-Industry Variation
Intermediates Labor Capital Intermediates Labor Capital

Intermediates - -0.3 -0.7 - -0.9 -0.4
Labor -0.3 - -0.4 -0.9 - 0.0
Capital -0.7 -0.4 - -0.4 0.0 -

Note: Table IV shows the correlation coefficients of the output elasticity estimates of the three inputs.
The between-industry results show the weighted correlation of the average output elasticities of each
NAICS2 industry, the within-industry results demean the output elasticities at NAICS2 level.

firm-level variation for output elasticities compared to RTS. This is partly because the

intermediate input elasticity is negatively correlated with the capital and the labor

elasticity within industries (see Table IV).

One potential concern is that the observed dispersion in TFP, output elasticities,

and RTS is driven by transitory movements of the same firm over the production func-

tion rather than fixed firm characteristics. To evaluate whether this is the case, we

run a panel regression of each of our estimates on firm size, firm age, time dummies,

and firm fixed effects. Intuitively, if the dispersion is mostly due to fixed differences

between firms, the firm fixed effects should absorb most of the variation in our esti-

mates. We find that this is the case: of a standard deviation of RTS of 0.052, 86%

is explained by firm fixed effects after controlling for firm age and size (the standard

deviation of the FE is 0.045). We find similar results for the rest of our estimates

(elasticities and TFP) and in US manufacturing.14 We conclude that the observed

heterogeneity in RTS is mostly explained by permanent between-firm differences,

consistent with the model of heterogenous RTS that we describe in Section 5.

4.2 Production Technologies over the Firm-Size Distribution

We now turn to the systematic variation of our estimates over the revenue distri-

bution.

Returns to scale by firm size. Figure 1a shows a binned scatter plot of aver-

age RTS by firm revenue for a pooled sample of all firm-year observations across

industries. For this figure, we use the firm-year estimates that result from estimating

14In US data, we find a standard deviation of RTS of 0.058, of which 0.048 is accounted for by
firm fixed effects.
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Figure 1 – Returns To Scale by Firm Size

(a) Pooled Sample
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Notes: Figures 1a and 1b show the average RTS within 5%-quantiles of the firm-revenue distributions. In Panel (B),
RTS are demeaned by industry averages.

production functions within 2-digit NAICS. We find that firms in the bottom two

fifths of the revenue distribution have, on average, similar (decreasing) RTS of about

0.94. As we move to higher percentiles of the revenue distribution, however, RTS

increases monotonically and strongly by firm revenue from 0.94 for firms below the

40th percentile to 1.04 for those in the top 5%. These differences imply that firms

in the top 5% of the revenue distribution produce 11% more with a 1% higher input

bundle compared with those below the 40th percentile, holding TFP constant.15

The variation in Figure 1a reflects within- and between-industries heterogene-

ity. For example, manufacturing firms are, on average, larger and therefore over-

represented in the upper end of the revenue distribution, and manufacturing indus-

tries also have higher average RTS. Therefore, some of the overall variation is driven

by heterogeneity across industries. To isolate the role of within-industry differences,

we rank firms into 20 quantiles within their industries according to their revenues

and demean firm RTS by industry averages. Figure 1b shows average demeaned RTS

over the within-industry revenue distribution. Again, firms below the median have

technologies with similar RTS, whereas above the median RTS increases steeply by

firm revenue: the average RTS of firms in the top 5% of the revenue distribution is

15Note that RTS is not fixed over time and firms are still subject to adjustment costs. Therefore,
the fact that some firms have increasing returns to scale does not necessarily mean that they can
increase their supply indefinitely. Furthermore, other studies commonly estimate RTS to be above 1
for some industries or firms (e.g., Gandhi et al. (2020) and Demirer (2020) find average RTS above
1 across multiple industries and countries).
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Figure 2 – Intermediate Input Elasticities by Firm Size

(a) Intermediate Inputs Elasticity
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(b) Intermediate Inputs Share
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Notes: Figure 2 shows the average estimated factor elasticities within 5%-quantiles of the revenue distribution; Figure
2b shows the intermediate inputs revenue share. In both cases we demean the within-quantile average by NAICS2
industry averages.

8 p.p. higher relative to the average RTS of firms in the bottom half of the revenue

distribution. This variation is almost as large as the variation in the pooled sample

(10 p.p.). Thus, we conclude that most of the variation in RTS by firm size is due to

within-industry differences.

Output elasticities by firm size. As we discussed in Section 2, we measure RTS

as the sum of output elasticities with respect to inputs. Therefore, the significant

increase in RTS is driven by either of these inputs or a combination of them. Our

analysis shows, however, that it is the intermediate input elasticity that entirely

accounts for the positive relation between RTS and firm revenue. As shown in Figure

2a, the intermediate input elasticity monotonically increases from -0.09 (relative to

the industry average) for the bottom 5% of firms by revenue, to approximately zero

for firms around the median, and to 0.09 for the top 5% of firms. This 9 p.p. gap

in intermediate input elasticities between the top 5% and median firms thus explains

all of the 8 p.p. gap in RTS in this range. Furthermore, Figure 2b shows that

the corresponding variation in the intermediate input revenue share is very similar—

with larger firms spending more on intermediate inputs relative to small firms as a

portion of their revenue—as expected since our estimation treats them as flexible

input. This finding also highlights that estimating gross output production functions

is essential: the sum of capital and labor elasticities is declining across the firm revenue

distribution, indicating that the use of value added production functions can lead to
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Figure 3 – Returns To Scale and Elasticities of Intermediate Inputs in Man-
ufacturing

(a) Returns to Scale
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Notes: Figure 3a shows the average RTS within percentiles of the sales growth distribution demeaned by industry
averages for the Canadian and US manufacturing sectors. Canadian results shown within 5%-quantiles of the revenue
distribution. Figure 3b shows the average intermediate input elasticity for the US and Canadian manufacturing sectors
and for the entire Canadian private sector within percentiles of the sales distribution.

misleading results.16

Total factor productivity by firm size. Intuitively, one would expect that firms

at the top of the firm size distribution are also the most productive. To see if this

is the case, we rank firms into 100 bins according to their RTS within each industry.

Then, we measure the relative TFP of a firm as its TFP rank within these narrow bins.

Figure 4 shows the average TFP percentile across the firm revenue distribution for

the pooled sample. Similar to previous literature (see Leung et al. (2008) or Baldwin

et al. (2002)), we find that relative TFP increases by firm size until the top decile

of the revenue distribution. For the top 10% of the largest firms, however, relative

TFP flattens out. This contrasts with the previously documented pattern of RTS by

firm size, which increases in a convex fashion at the top of the revenue distribution

(Figure 1). Therefore, we conclude that the largest firms tend to feature the highest

RTS, and not necessarily the highest TFP as commonly assumed.

4.2.1 Robustness Checks

US-Manufacturing. Our results are not driven by particular features of the Cana-

dian economy but are also present in other countries and industries. In particular,

16We show capital and labor elasticities in Appendix Figure OA.2. In Canada, both are, on
average, declining in firm size. In US manufacturing, the labor elasticity is also declining, while the
capital elasticity is u-shaped in firm revenue.
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our main results hold within the US manufacturing sector as well. First, Figure 3

displays the firm-level RTS relative to its industry average, showing that RTS is u-

shaped with respect to firm revenue, with a larger rise at the top, increasing about 9

p.p from the middle 50th to the top 1% of the revenue distribution. For comparison,

we also add a corresponding series for the Canadian manufacturing sector to this

figure, which shows a similar pattern. Second, most of the increase is again due to a

significant rise in the output elasticity of intermediate inputs, that rises from 0.4 at

the bottom of the firm-size distribution to around 0.55 for the largest firms within

US manufacturing.

Cobb-Douglas specification. One additional concern is that our results are driven

by the particular method we use in our estimation. To address this concern, we first we

re-estimate the production function by imposing homogeneous relative factor elastic-

ities while still allowing for RTS differences. The basic idea is to isolate heterogeneity

in RTS regardless of different relative output elasticities. In particular, we estimate

the production function by restricting to homogeneous relative output elasticities

while allowing for heterogeneity in RTS, that is, we assume the production function

is specified as Yjt = eνjt ·
(
MγM

jt K
γK
jt L

γL
jt

)ηjt . Then, the returns-to-scale parameter

ηjt is estimated from the first stage of the estimation procedure described in Section

2. Similarly to the baseline results, the Cobb-Douglas series in Figure 5 show that

RTS increases with firm size by about 10 p.p., with a stronger increase in the bottom

half and a weaker increase in the top half of the revenue distribution relative to our

baseline results.

Clustering specification. In a second robustness exercise, we re-estimate firms’

production technology within clusters of firms with similar characteristics. The mo-

tivation for this exercise is that we ideally want to estimate a separate production

function for each firm, but this is econometrically not feasible. Clustering similar

firms is feasible way of approaching this ideal. In practice, we cluster firms using

information on their average levels and growth rates of output, capital stock, labor

expenditure, and intermediate input expenditures. We standardize these firm-level

variables and then apply the k-means clustering algorithm, with 20 clusters. We fur-

ther impose that a firm belongs to only one cluster throughout its lifecycle. Finally,

we then estimate the nonparametric production function by each cluster. After esti-
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Figure 4 – Firm Size and Productivity
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Notes: Figure shows the average firm TFP rank within percentiles of the within-industry revenue distribution. The
TFP rank is calculated within percentiles of the RTS distribution.

mation, we sort firms by revenue within an industry, as we do in our baseline results.

The Cluster series in Figure 5 shows that while these estimates are less smooth along

the revenue distribution, the main patterns are as in the baseline results: RTS are

similar within the bottom half of firms, and then increase by close to 10 p.p. from

the median to the top 5% of firms within an industry.

Intangible capital specification. Finally, we include a measure of intangibles in

our measure of the capital stock and re-estimate firms’ production functions. In the-

ory, including intangibles in firms’ capital stock changes measured productivity, the

output elasticity of capital, and therefore RTS. In particular, if larger firms invest

disproportionally more in intangible capital, then excluding it from the capital stock

measure leads to underestimation of the capital elasticity (and of RTS) and overes-

timation of TFP for larger firms. Indeed, the Intangible Capital series in Figure 5

shows that the positive relation between firm size and RTS becomes even stronger

when including intangible capital.17

Ranking firms by employment or value added. Appendix Figure OA.3 shows

our main findings when ranking firms, within industry, by employment or value added

instead of by revenue. The patterns for RTS are very similar. However, the output

elasticities show different patterns: firms with high employment or high value added

tend to have higher labor elasticities, whereas the intermediate input elasticity shows

17The positive relation between firm size and conditional TFP percentile remains unchanged,
perhaps due to the fact firms that have the same RTS also have similar intangible intensities.
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only a small uptick for the largest firms. This is somewhat mechanical, as we except

high employment or high value added firms to be labor-intensive by construction of

the ranking. For this reason, we prefer to rank firms by firm revenue—a factor-neutral

approach—in our main approach. It is reassuring that the pattern for RTS by firm

size is very stable across the three ranking methods.

Markups. Our RTS estimates are based on revenue elasticities of the three inputs.

One may be concerned that the positive relation between RTS and firm size could be

driven by markup variation (e.g. De Loecker et al. (2020)). Ideally, we would want

to separately estimate physical output elasticities and markup. However, doing so

would require firm-level information on output prices and physical quantities, which

we do not have in the Canadian or US datasets. Even with such output price and

physical quantity information, it is challenging to estimate the physical elasticity for

multi-product firms, in the absence of information on product-specific inputs. It is

important to note that if larger firms charge higher markups—as implied by mod-

els with oligopolistic competition (Atkeson and Burstein, 2008) or with monopolistic

competition and log-concave demand systems (Edmond et al. (2023))—then physical

RTS would be increasing even more with firm size compared to measured revenue

RTS.18 Indeed, when we estimate firm-level markups in our data following the ap-

proach of De Loecker and Warzynski (2012), we find that markups increase with firm

size. Specifically, we adopt the value-added and translog production function specifi-

cation of De Loecker and Warzynski (2012) and conduct the estimation by industry.

Figure OA.1 in the Appendix shows that, on average, markups monotonically in-

crease with firm revenue, consistent with De Loecker et al. (2020). These theoretical

and empirical considerations reinforce our interpretation of measured RTS differences

along the firm-size distribution as representing differences in production technologies.

4.3 Identification: Output Elasticities and Input Shares

Typically, estimates of output elasticities of inputs reflect their corresponding rev-

enue input shares. In fact, for Cobb-Douglas production functions, output elasticities

are exactly equal to (average) input shares. Our specification is more flexible than

Cobb-Douglas, and the GNR method does not solely rely on the first order condi-

18It can easily be shown that the physical output elasticity is the product of revenue elasticity
and markup.
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Figure 5 – Returns to Scale and Firm Size for Different Specifications
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Notes: In the “Cobb-Douglas” specification, we estimate the production function by restricting to homogeneous
relative output elasticities while allowing for heterogeneity in RTS. In the “Cluster” specification, we apply the k-means
clustering algorithm (20 clusters) and estimate the nonparametric production function within clusters. Intangible
capital is constructed using PIM. In all specifications, we sort firms based on sales within industry, and RTS is
demeaned by industry averages.

tions (FOCs) of profit-maximizing firms. Nevertheless, output elasticities tend to be

positively correlated with the respective factor shares, as we discuss here.

Figure 6 shows (demeaned) output elasticities for all three inputs, when ordering

firms by their intermediate input shares (Figure 6a), by their labor shares (Figure 6b),

and by their capital shares (Figure 6c).19 For all three inputs, the respective output

elasticity is positively correlated with the corresponding input share. Intermediate

input-intensive firms have higher intermediate input elasticities, labor-intensive firms

have higher labor elasticities, and capital-intensive firms have higher capital elastici-

ties. For intermediate inputs, the positive correlation is very strong, which is expected

since we treat them as flexible input and we use the firm’s FOC to estimate the inter-

mediate input elasticity (see equation (1)). On the other hand, for labor and capital,

our estimation does not rely on firms FOCs. Yet, we find that their input shares are

also strongly positively correlated with their corresponding output elasticities. These

results suggest that heterogeneity in output elasticities, therefore in RTS, reflects

differences in input shares.20

19In the Appendix, we plot the relationship between input shares and firm revenue in Figure
OA.4. We find that the intermediate input share increases with firm revenue for the entire Canadian
private sector, within manufacturing, and within manufacturing in the US. Instead, labor and capital
shares decline by firm revenue.

20These findings suggest that high-RTS firms should have relatively low profit shares. This is
indeed the case: Figure OA.5 in the Appendix shows that, on average across firms, the EBITDA-
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Figure 6 – Output Elasticities and Factor Shares of Revenue

(a) Intermediate input share
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(b) Labor share
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(c) Capital share
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Notes: Figure 6 shows the relation between the input revenue shares defined as the ratio between the total cost of
intermediate inputs, the total wage bill, and the total value of capital stock, divided by firm revenue, and the estimated
output elasticity. Firms are ordered by the respective factor shares on the horizontal axis. The vertical axis shows
averages of estimated output elasticities, demeaned within 2-digit NAICS industry.

4.4 Firm Lifecycle Profile

Intuitively, heterogeneity in returns to scale has important implications not only

for the firm size distribution, but for the evolution of each firm over the life-cycle. In

particular, one would expect that firms with high RTS tend to grow faster and reach a

higher optimal size relative to firms with the similar TFP but lower RTS. To examine

these life-cycle patterns, we construct a balanced panel of firms and group them

based on their production function characteristics when they entered the economy.

Specifically, we construct a sample of firms which i) are born between 2002 and 2005,

revenue ratio correlates negatively with RTS.
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Table V – Probit Regressions of Firm Exits

(1) (2)
TFP Percentile -0.001*** 0.005***

(0.000) (0.000)
RTS -0.600*** -4.527***

(0.020) (0.088)
N 4.1M 3,.4M
Constant Y Y
Industry FE Y Y
First-difference Y
Pseudo R2 0.010 0.018

Note: Robust standard error reported. We first-difference both regressors in Column (2).

and ii) are observed for at least 12 consecutive years in the sample. We group firms

based on their initial RTS demeaned at the industry level and initial TFP. Figure 7

shows the average log revenue, also demeaned at the industry level, against firm age

for different firm groups. We find that firms with high initial RTS and TFP both start

with higher revenue relative to other firms of the same age within the same industry.

More interestingly, firms with higher initial RTS grow significantly faster than those

with low initial RTS. Firms in the top 10% of the initial RTS distribution grow about

30 log points over the next 10 years, whereas those in the bottom 90% grow, on

average, only about 20 log points. This finding corroborates our interpretation that

firms with high measured RTS operate technologies that are more scalable, allowing

them to grow significantly more over their lifecycle.

In contrast, Figure 8b shows that firms that enter with high TFP, while initially

larger, do not grow faster than other firms in the same industry.21 In fact, higher

initial TFP is associated with slightly smaller subsequent firm growth rates. This

pattern is consistent with TFP as a mean-reverting process and might explain why

some firms do not expect to growth, as documented by Hurst and Pugsley (2011). Our

results indicate that these firms, although highly productive, might be characterized

by low RTS, and hence small optimal size.

The previous results focus on the life-cycle patterns of surviving firms. We also

study how RTS and TFP heterogeneity affect firm exit. Specifically, we estimate a

21By construction, the three TFP groups in Figure 8b all have identical average RTS.
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Figure 7 – Life cycle of firms starting with different RTS and TFP
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Notes: Figures 8a and 8b compares the life-cycle profile of revenue between firms with different initial RTS and TFP .
It is constructed using a balance panel of firms which 1) are born between 2002 and 2005, and 2) survive for at least
12 years. We demean firms’ initial RTS at the NAICS2 industry level and construct the TFP as described before.
We bin firms into three groups based on their demeaned initial RTS in Figure 8a and three groups based on initial
TFP in Figure 8b. Firm log revenue is also demeaned at the NAICS2 industry level.

probit regression of firm exit on TFP percentile and RTS. The results are reported

in Table V. In Column (1), we use the levels of standardized production parameters,

and in Column (2) we use the first-differenced parameters, controlling for NAICS2

industry fixed effects in both columns. We see that in both specifications, a higher

RTS is associated with a lower probability of firm exit. The effect of TFP on firm

exit is significantly smaller, with opposite signs in levels and first-differences. We con-

clude that from an ex ante perspective, RTS rather than TFP heterogeneity predicts

differences in firm growth over the life cycle.

4.5 Implications for Wealth and Wage Inequality

We conclude this section by looking at the relation between wealth, wage, and

returns to scale. First, we look at how the production function parameters vary by

owner’s equity wealth. The share of self-employed and business owners in Canada

equals 11.7% of individual tax filers. The average number of firms owned by a business

owner is 1.96, with a standard deviation of 2.34. We calculate the equity wealth of

each individual by aggregating the value of the firms they own, weighted by the own-

ership shares. Then, for each individual, we calculate their RTS and TFP percentile

by taking a equity-value weighted average of the firms they own. Figure 8 show the

results. Similarly to our results by firm size, we find that high-wealth individuals tend
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Figure 8 – Returns to Scale and Productivity by owner’s wealth
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Notes: Figure 8 shows the average RTS and TFP by percentiles of owners’ equity wealth distribution.

to own firms that on average have higher RTS. In other words, wealthier firm owners’

production technologies are more scalable. In addition, conditional on within-sector

RTS, the TFP rank is also increasing in owners’ wealth. Given that firms owned by

rich households tend to have high RTS and high TFP, it is hard to disentangle the

strength of each for wealth accumulation. We use the model of the next section to

shed some light on this issue.

It is well known that large firms tend to pay higher wages to similar workers

than smaller firms (Bloom et al., 2018; Brown and Medoff, 1989). Given our results,

however, it is unclear if this relation derives from large firms having higher TFP or

higher RTS. To distinguish between these two explanations, we rank firms in our

sample by their average wage and compute average RTS and TFP within firm wage

deciles. We find that firms that pay on average more to their workers tend to have

higher RTS—and therefore tend to be larger—than firms with low average wage, as

shown in Panel A of Figure 9. In contrast, there is much less variation in TFP across

the firm wage distribution as shown in panel B of Figure 9. We conclude that the

wage-firm size relation is mostly driven by heterogeneity in RTS.
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Figure 9 – Returns to Scale and Productivity and Firm Average Wage
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Notes: Figure 9 shows the average RTS and TFP by deciles of firms’ average wage.

5 Misallocation with RTS Heterogeneity

So far, we have shown sizable heterogeneity in RTS across incorporated firms in

Canada and manufacturing firms in the US. More importantly, larger firms are likely

to have more scalable production technologies. In this section, we show why this

heterogeneity matters in an application to efficiency costs of misallocation, indicating

the potential role of RTS heterogeneity for an array of quantitative questions, such

as optimal taxation of capital, firm recruiting intensity (Gavazza et al., 2018), or firm

cyclicality (Clymo and Rozsypal, 2023). In particular, we embed firm heterogeneity in

RTS (η) and TFP (z) in a quantitative model of entrepreneurship. Our main applica-

tion compares the aggregate effects of financial frictions in a model with heterogeneity

in both η and z—the (η, z)-economy—to the standard setting with heterogeneity in z

only—the z-economy. To build intuition, we begin by deriving an analytical result in

a static endowment economy. We then quantify the mechanism in a dynamic setting.

5.1 Analytical Result in an Endowment Economy

We consider an endowment economy with aggregate factor supply normalized to

one, X = 1. There is a continuum of firms i ∈ [0, 1], producing perfectly substitutable

goods. Firms i ∈ [0, χ], where χ ∈ (0, 1), are constrained, facing an input price wedge

τ ≥ 0. Their production technologies are iso-elastic: each firm is characterized by
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a pair of parameters (η, z) with decreasing RTS η ∈ (0, 1) and TFP z, and their

output is given by y = f(x; z, η) = z · xη. The residual fraction of firms i ∈ (χ, 1]

is unconstrained and has constant RTS.22 The following proposition characterizes

misallocation in terms of the share of the economy that is constrained as well as the

returns to scale of constrained firms:

Proposition 1. Consider an interior equilibrium where the output share of con-

strained firms is below one. Then, up to a second order approximation around the

first best (τ = 0), the percent output loss associated with τ is given by

∆ lnY (τ) =
τ 2

2︸︷︷︸
size of friction

·
∫ χ

0

wi · di︸ ︷︷ ︸
output share of constrained firms

·
∫ χ

0

wi∫ χ
0
wjdj

· ηi
1− ηi

· di︸ ︷︷ ︸
avg. RTS

1−RTS constrained firms

where wi ≡ y?i
Y ?

denotes the relative output of firm i in the first best.

The proposition states that misallocation is proportional to the size of the fric-

tion, the output share of constrained firms, as well as increasing and convex in the

(weighted-average) RTS of constrained firms. Therefore, for a given friction, mis-

allocation is more severe when constrained firms exhibit higher RTS. In addition,

due to the convexity of misallocation in RTS, higher dispersion of RTS also trans-

lates into more misallocation. Intuitively, a given input price wedge translates into

a larger quantity adjustment when RTS are high—when marginal products decline

more slowly—as constrained firms reduce their inputs more. Therefore, misallocation

is larger. Firm TFP, on the other hand, matters only indirectly via the output share

of constrained firms. We illustrate this in Figure 10, which depicts the marginal input

product of firms that would be “large” in the first-best, and which matter the most

for misallocation: the solid blue line represents the conventional setting where large

firms have high TFP (z̄), the dashed red line represents an economy where these

large firms have high RTS (η̄). For a given wedge τ , misallocation—the area under

the curve—is larger in the η̄-economy.

22Alternatively, unconstrained firms exhibit decreasing RTS but there is free entry in that sector,
such that there are constant RTS at the sectoral level.
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Figure 10 – Efficiency costs in endowment economy

5.2 Quantitative Dynamic Model

We now consider a dynamic economy in the tradition of Quadrini (2000); Cagetti

and De Nardi (2006), where the set of constrained firms emerges endogenously. We

use this model to quantify misallocation in an economy where firms differ in both

RTS and TFP, as in our data, and compare it with the misallocation in an economy

where firms differ only in TFP.

5.2.1 Model setup

Time is discrete and there is a continuum of agents of mass one, who derive log

utility from consumption. They discount the future at rate β̃ and face a constant

death probability p ∈ [0, 1). Thus, their effective discount factor is β = (1 − p) · β̃
and they maximize ∑

t≥0

βt ln(c).

Agents face an occupational choice between employment as a worker and entrepreneur-

ship, o ∈ {W,E}. A worker’s labor income equals w · h, where w denotes the wage

rate and h efficiency units of labor supply, which follow a first-order Markov process.

Entrepreneurs are price-takers in input and output markets, using labor ` and cap-

ital k at rental rates w,R to produce output z · f(k, `)η, where f(·) is a constant

RTS production function. The pair (z, η) denotes entrepreneurial productivity z and

scalability of their project η, and follows a joint first-order Markov process. Asset

markets are incomplete, and agents can invest their wealth a ≥ 0 into an annuity,

paying an interest rate r. Upon death, individuals are replaced by the same number of

newborn households who start with zero wealth. We parameterize financial frictions

30



by λ ∈ [0, 1], and assume that a fraction λ of total input expenditures needs to be

financed by the entrepreneur’s own wealth. Thus, static profit maximization entails

a net profit of

π(a, z, η) = max
k≥0,`≥0

z · f(k, `)η − w · `−R · k

s.t. w · `+R · k ≤ a

λ
,

implying input choices k(a, z, η), `(a, z, η) and output y(a, z, η).23 Thus, the dynamic

agent problem can be written in recursive form as

V (a, h, z, η) = max
a′≥0,c≥0,o∈{W,E}

u(c) + β · E[V (a′, h′, z′, η′)]

s.t. c+ a′ = Io=W · w · h+ Io=E · π(a, z, η) + (1 + r) · a.

We assume that there is a competitive financial intermediary, investing in physical

capital with depreciation rate δ, and issuing the annuities.

5.2.2 Equilibrium

We consider the stationary equilibrium of this model, which is described by a set

of prices (r, R,w) such that:

1. Agents optimize, giving rise to decision rules a′(θ), c(θ), o(θ), k(θ), `(θ), y(θ),

where θ = (a, z, h, η) summarizes the individual’s state, as well as an ergodic

distribution G(θ).

2. The financial intermediary maximizes profits, implying R = r + δ − p · (1 + r).

23We assume that the friction affects all inputs symmetrically to focus on overall firm size distor-
tions, without introducing additional distortions on relative input use (as would be the case, e.g.,
with a collateral constraint on k only). Relatedly, we also do not include intermediate inputs in
our production function here. Including them would tend to magnify the level of efficiency costs of
financial frictions, but not change the comparison between the (η, z)- and the z-economy.
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3. Given G(θ), all markets clear:

L ≡
∫
o=W

h · dG(θ) =

∫
o=E

`(θ) · dG(θ) (labor market)

K ≡ 1

1− p

∫
a · dG(θ) =

∫
o=E

k(θ) · dG(θ) (capital market)

Y ≡
∫
c(θ) · dG(θ) + δ ·K =

∫
o=E

y(θ) · dG(θ) (goods market)

5.2.3 Calibration

The main idea is to calibrate both the (η, z)- and the z-economy to the same

set of observable moments of the firm size distribution and entrepreneurship dynam-

ics. Before going there, we briefly discuss fixed common parameters. We set the

death probability to 1
80

, corresponding to an expected life expectancy of 80 years.24

We use a Cobb-Douglas production function (f) with capital share α = 0.4 and

depreciation rate δ = 0.05. We model the process for labor efficiency units h as a

log-normal AR(1) with autocorrelation of 0.9, cross-sectional standard deviation of

1.3, and normalized mean µh = −σ2
h

2
, which we estimate using Canadian data on

individual post-tax earnings. We calibrate both economies at λ = 0.3, meaning that

30% of input expenditures need to be financed with the owner’s wealth, and then

vary λ in counterfactuals.25

(z)-Economy: We jointly calibrate a set of five parameters (β, η, σz, ρz, ξz) to match

a set of six empirical moments as summarized in the right column of Table VI. We now

provide intuition on how the parameters are identified: the effective discount factor β

affects the aggregate capital-output ratio. The (common) RTS parameter η is closely

related to the population fraction of entrepreneurs, as it impacts their income share.

We model the z-process as log-normal AR(1) with normalized mean µz = −σ2
z

2
. Its

auto-correlation (ρz) affects the transition into (and out of) entrepreneurship. Finally,

the firm size distribution is closely related to the cross-sectional dispersion of z(σz).

We also stretch out the top 1% of the z- distribution with a Pareto tail, where ξz

24The death rate affects in particular wealth accumulation at the bottom of the wealth distri-
bution, as newborns enter with zero wealth. The bottom 50% wealth share equals 3.3% in the
(η, z)-model and 2.2% in the z-model, in the ballpark of the value for Canada of 4.9%.

25Defining the debt d of entrepreneurs as d = max {0, k − a}, the aggregate debt-to-capital ratio
equals 81% in the (η, z)-model and 71% in the z-model, in the range of the value for Canada of 70%.
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Table VI – Dynamic model: Targeted moments and calibrated parameters

Data Model
(η, z)-economy z-economy

A. Targeted moments
Fraction entrepreneurs 0.117 0.117 0.117
Transition rate W→E 0.021 0.021 0.021
Top 10% revenue share 0.799 0.796 0.804
Top 1% revenue share 0.522 0.524 0.515
Top 0.1% revenue share 0.282 0.283 0.284
RTS: Top 5% vs Bottom 50% (by revenue) 0.083 0.083 0*
Capital-output ratio 2.970 2.971 2.970

B. Internally calibrated parameters
Mean RTS µη 0.782 0.683
Standard deviation RTS ση 0.054
Standard Deviation TFP σz 0.614 0.910
Persistence TFP ρz 0.954 0.970
Pareto tail TFP ξz 2.880
Correlation (z, η) σz,η -0.262
Discount factor β 0.890 0.902

Notes: Steady state calibration of the (η, z)- and z-economy (both at λ = 0.3). * not targeted.

denotes the tail coefficient. This allows the model to match the right tail of the firm

size distribution as well. Overall the fit of the model to the targeted moments is

excellent.

(η, z)-Economy: In a nutshell, we repeat the calibration of the z-economy, and in

addition discipline the heterogeneity in η by matching the observed dispersion of RTS

along the revenue distribution (middle column of Table VI). Concretely, we model η

as a truncated normal AR(1) in the interval (0, 1) with parameters (µη, ση, ρη). We

ex ante fix the auto-correlation to a high value of ρη = 0.98, which is the persis-

tence of RTS in our empirical analysis. Its mean µη again controls the fraction of

entrepreneurs. Its cross-sectional standard deviation ση is closely linked to the differ-

ence in the average RTS of the top 5% vs. the bottom 50% of firms ordered by revenue.

We also allow z and η to be correlated by setting log TFP ln z = z̃+ση,z · σzση · (η−µη),
where z̃ follows a normal AR(1) process with parameters (σz, ρz, µz = −σ2

z

2
). In-

tuitively, both ση,z and σz affect moments of the firm size distribution: e.g., if the

empirical dispersion in RTS was small, then a high residual TFP dispersion σz would

be required to match the high revenue concentration of firms. Conversely, if the
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observed dispersion in RTS was very high, then the calibration would infer a more

negative value for the correlation parameter ση,z. We calibrate the TFP parameters

residually in this way, instead of directly feeding the estimated joint distribution of η

and z into the model, because when firms operate different production functions that

differ in η, inferred relative TFP depends on the unit choice. This is the case in our

model setting, as well as in some of our empirical approaches (when we cluster firms,

such that firms within an industry do not all share the same production function).26

In sum, we calibrate six parameters to match seven moments. This model version

also provides an excellent fit to the data. It is noteworthy that it does not require a

Pareto tail in z to replicate the right tail of the firm size distribution; the observed

heterogeneity in RTS combined with a log-normal z suffices.

5.2.4 Quantitative findings

The two model economies are observationally equivalent in terms of the fraction of

entrepreneurs, the persistence of entrepreneurship, the firm size distribution, and the

ratio of wealth (capital) to output. We now evaluate the efficiency losses associated

with the same financial friction in both economies. Figure 11 below compares the

output losses induced by raising the financial friction from the unconstrained case of

λ = 0 all the way up to λ = 1, across stationary equilibria of the two model versions.

We see that, e.g., if entrepreneurs need 30 cents of their own wealth to finance a dollar

of input expenditure, the (η, z)-economy with heterogeneity in both TFP and RTS—

disciplined by our empirical estimates—features an output loss of 18.3 log points,

relative to the frictionless economy. However, in the conventional z-economy that

26To see this, consider a simple example of two firms, j = 1, 2, that differ in their RTS (η1 > η2)
and TFP levels. Assume that their production function is given by yj = zj · `

ηj
j , and that RTS (a

unit-free elasticity), as well as input and output levels are known. Then the ratio of their measured
TFP is given by

z1
z2

=
y1
y2
·
(
`1
`2

)−η1
· 1

`η1−η22

,︸ ︷︷ ︸
unit dependance

which depends on the level of the input `; therefore, it depends on the unit of account. In particular,
relative TFP of the higher-RTS firm is inversely proportional to the unit of account. Therefore,
depending on the choice of unit (e.g., hours vs. full-time equivalents), for the same data, one can
find any relationship (both in sign and magnitude) between TFP of these two firms. Therefore,
when firms operate different production functions that differ in RTS, relative TFP does not have
the usual cardinal interpretation. For a similar argument about unit dependance in the context of
house price elasticities, see Greaney (2019).
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Figure 11 – Output losses from financial friction in dynamic model
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imposes homogeneous RTS, the output loss is significantly lower, at 7.4 log points.

Therefore, incorporating realistic heterogeneity in RTS, while otherwise matching the

same observables, amplifies the output losses due to the financial friction by 147%.

To understand this finding, we additively decompose the total log output loss into

three terms: (i) static misallocation of production factors holding fixed occupational

choice, (ii) misallocation of talent across occupations, and (iii) under-accumulation

of capital. Panel A of Table VII shows that static misallocation of production factors

across firms contributes 10.6 log points in the (η, z)-economy, more than half of the

total GDP loss, and twice as much as in the conventional z-economy. This is the

channel highlighted in our analytical discussion in Section 5.1, and our quantitative

findings are in line with Proposition 1. Under-accumulation of capital contributes the

majority of the remaining output loss. Misallocation of talent across occupations is

also a little bit larger in the (η, z)-economy, but rather small in both economies: the

λ-friction mainly misallocates production factors across firms, but does not distort

the decision to enter entrepreneurship vs. employment much. We deliberately used a

rather conservative, simple and transparent calibration strategy, avoiding, e.g., fixed
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Table VII – Dynamic model: Decomposition of output losses and ro-
bustness

(η, z)-economy z-economy

A. Decomposition of output losses going from λ = 0 to λ = 0.3
Total log GDP loss 18.3 7.4
. . . due to misallocation of production factors 10.6 5.0
. . . due to misallocation of talent 0.6 0.5
. . . due to K accumulation 7.1 1.9

B. Total log GDP loss: robustness to alternative comparisons
Equating λ 18.3 7.4
Equating aggregate debt/capital ratio 26.9 7.4
Equating dispersion in log marginal products 21.6 7.4

Notes: Panel A additively decomposes the total (steady state) log GDP loss going from λ = 0 to λ = 0.3 into: (i)
misallocation of production factors (starting from the λ = 0.3 steady state, fixing K,L, and occupational status,
allowing for efficient reallocation of K,L across firms); (ii) misallocation of talent (in addition allowing for efficient
change of occupational status), and (iii) dynamic under-accumulation of capital. Panel B reports the total log GDP
loss in alternative scenarios where we raise λ from 0 to 0.3 in the z-economy, and from 0 to x in the (η, z)-economy,
where x is chosen to match the debt ratio, resp. marginal input product dispersion of the z-economy with λ = 0.3.

costs of entry and exit, which would tend to magnify the overall importance of that

channel.

Our findings are robust to alternative approaches of making the financial friction

comparable in both economies. In our benchmark scenario we raise λ from 0 to 0.3 in

both economies. Panel B of Table VII shows that our findings are even stronger when

instead equating observable moments such as the aggregate debt-to-capital ratio or

the dispersion in log marginal input products. For these exercises, we continue to

raise λ from 0 to 0.3 in the z-economy, which generates an aggregate debt-to-capital

ratio of 0.708 and a cross-sectional standard deviation of log marginal products of

0.144 in the latter case. We then raise λ from 0 to values of 0.797 (resp. 0.454) in

the (η, z)-economy, in these two scenarios, to replicate the debt ratio (resp. marginal

product dispersion). As a result, the (η, z)-economy generates output losses which

are 192− 264% larger than the ones in the conventional z-economy.

6 Conclusion

In this paper, we have documented significant heterogeneity in firms’ scalability

(their RTS), even within narrowly defined industries. RTS heterogeneity is large,

highly persistent, and systematically linked to firm size: larger firms tend to be those

that have higher RTS. Our empirical analysis also showed that differences in the
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output elasticity of intermediate inputs drive the positive relation between firm size

and RTS, whereas labor and capital elasticities are jointly decreasing in firm size.

The documented RTS heterogeneity has important implications for our under-

standing of the drivers of firm growth, the determinants of the firm size distribution,

and the distributional impact of financial constraints and taxes. To demonstrate this,

we developed a quantitative model with firm heterogeneity in TFP—as in typical

models of entrepreneurship and firm dynamics—and in RTS. We used this model

to evaluate the efficiency and output costs of financial frictions. When large firms

are characterized by high RTS—as we documented empirically—as opposed to high

TFP—the conventional view—efficiency costs are magnified. We provide intuition

for this result in a static setting, and then quantify the mechanism in the dynamic

model. We show that the same friction generates more than twice the efficiency and

output costs in an economy with both RTS and TFP heterogeneity, as observed in

our data, compared to the conventional calibration that loads all observed firm het-

erogeneity on TFP dispersion. These findings suggest that allowing for realistic RTS

heterogeneity also has important implications for optimal wealth and capital income

taxation.
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Online Appendix for “Scalable vs. Productive Technologies”

Mons Chan1 Guangbin Hong2 Joachim Hubmer3 Serdar Ozkan4 Sergio

Salgado5

A Data Appendix

We describe how we construct the variables and the estimation sample in this

section.

A.1 Variable Construction

Revenue We use the revenue measure which is computed by Statistics Canada for

constructing the National Account. This measure is derived by summing up relevant

terms from the T2 Corporate Income Tax Return Form terms.

Labor: We use the total worker compensation, which is also computed by Statistics

Canada for constructing the National Account. This measure includes wages, salaries,

and commissions paid to all the workers employed within a year.

Capital: We employ the Perpetual-Inventory Method (PIM) to construct the capital

stock. We make use of information on the first book value of tangible capital observed

in the dataset, annual tangible capital investment, and amortization. Specifically,

capital stockK of firm i in year t is computed asKi,t = Ki,t−1+Investi,t−Amorti,t, t ≥
t0i and t0i is the first year we observe the book value of tangible capital of firm i. The

initial year capital stock K is calculated as the book value of tangible capital net of

accumulated tangible capital amortization. Tangible investment include investment of

building and land, computer, and machines and equipment. In addition, We construct

a capital stock measure that includes intangible capital. We also follow the PIM for

intangibles and make use of information on the book value of intangible capital,

annual intangible capital investment and amortization.
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Intermediates: We measure intermediate inputs as the total expenses not related

to capital and labor. Specifically, it is computed as the sum of operating expenses

and costs of goods sold net of capital amortization. The operating expenses and

costs of good sold variables are also constructed by Statistics Canada to replicate the

National Account, and neither of them encompasses worker compensation.

Firm owner and wealth information: We obtain ownership information from

the Schedule 50 Shareholder Information of T2 Corporate Tax Files. Schedule 50

provides information of the filing firms on their shareholders with at least 10% of

shares, the percentage of shares owned by each shareholder, and the type of shares

owned (common or preferred). Statistics Canada tracks chained ownership by indi-

viduals (e.g. individual A owns a share of firm B and firm B owns a share of firm

C) and constructs a tracked share of ownership of firms by each ultimate individual

shareholder. We merge the ownership information to the firm panel dataset and cal-

culate total individual equity wealth as the ownership share weighted sum of the value

of all holding firms. Firm value is calculated as total asset net of total liabilities.

Linked employer-employee information: We obtain linked employer-employee

and earnings information from the T4 Statement of Renumeration Paid form. The

T4 files provide job-level earnings information with individual and firm identifiers,

where a job is defined as a worker-firm pairing. A worker can have more than one T4

records in a year if she works for more than one firms. For multiple job holders, we

keep the job that offers the largest earnings of the year and call it the main job. In

addition, we drop workers with annual earnings from the main job lower than 5000

CAD.

A.2 Sample Selection

We convert all the monetary variables to be denominated in 2002 Canadian dollars.

Several steps are taken to construct the estimation sample. Second, we drop firms

with missing industry information. Second, we drop the first-year observation that

we observe a firm’s book value of tangible capital and the observations before, as

we cannot the the PIM to construct capital stock for these observations. Third, we

drop firm-year observations with missing and non-positive revenue, labor, capital, and

intermediate input values. We further drop the observations whose one-year lagged

revenue or inputs are missing or non-positive, as our identification strategy requires

2



using lagged labor input as the instrument. Fourth, we drop the observations with

extreme factor shares, that is, the ones with wage bill-to-revenue ratio below the 1st

percentile or above the 99th percentile, with wage bill-to-value added ratio below

the 1st percentile or above the 99th percentile, with intermediate input-to-revenue

ratio above 0.95 or below 0.05, and with capital stock-to-revenue ratio above the

99.9th percentile. This sample selection procedure leaves us with around 4.3 million

firm-year observations.

B Proof of Proposition 1

W.l.o.g., set the productivity of the CRTS sector to 1. Then, the equilibrium

input price equals 1. Given τ ≥ 0, the input choice and output of constrained firm i

are:

xi(τ) =

(
ηi · zi
1 + τ

) 1
1−ηi

and yi(τ) = z
1

1−ηi
i ·

(
ηi

1 + τ

) ηi
1−ηi

.

By market clearing, aggregate input and output of unconstrained firms both equal

1−
∫ χ

0

xi(τ)di.

Thus, we can write the aggregate misallocation loss as

∆Y (τ) = Y ? − Y (τ) =

∫ χ

0

(yi(0)− yi(τ)) di−
(∫ χ

0

xi(0)di−
∫ χ

0

xi(τ)di

)
=

∫ χ

0

(yi(0)− yi(τ))− (xi(0)− xi(τ)) di

=

∫ χ

0

y?i ·

[(
1−

(
1

1 + τ

) ηi
1−ηi

)
− η ·

(
1−

(
1

1 + τ

) 1
1−ηi

)]
︸ ︷︷ ︸

≡Li(τ)

di

Perform a second-order approximation of Li(τ) around τ = 0. Since Li(0) = L′i(0) = 0

and L′′i (0) = ηi
1−ηi , it follows that Li(τ) ≈ τ2

2
ηi

1−ηi . Using the definition wi ≡ y?i
Y ?

, the

3



proposition follows:

∆ lnY (τ) =
∆Y (τ)

Y ∗
≈ 1

Y ∗
·
∫ χ

0

y?i ·
τ 2

2

ηi
1− ηi

di

=
τ 2

2
·
∫ χ

0

wi ·
ηi

1− ηi
di

=
τ 2

2
·
∫ χ

0

wi · di ·
∫ χ

0

wi∫ χ
0
wj · dj

· ηi
1− ηi

di.

C Additional Figures and Tables

Table OA.1 – Summary statistics for Manufacturing Firms

Mean Median St.dev P50-P10 P90-P50 P99-P50

Revenue 14.15 13.95 1.58 1.67 2.31 4.67
Intermediates 13.56 13.35 1.68 1.76 2.46 4.93
Labor 12.91 12.77 1.49 1.67 2.12 4.10
Capital 12.03 11.98 1.99 2.39 1.87 5.27

Notes: Table shows moments of the distribution of revenues, intermediate inputs, labor, and capital stock in log real
Canadian dollars for the Canadian Manufacturing Sector.. The total number of observations is 436,000.

Table OA.2 – Distribution of production function parameters for man-
ufacturing Firms

Mean Median St.dev P50-P10 P90-P50 P99-P50

Returns to Scale 1.00 1.00 0.02 0.02 0.02 0.07
Output Elasticities

Intermediates 0.57 0.56 0.14 0.16 0.18 0.37
Labor 0.40 0.41 0.13 0.17 0.15 0.28
Capital 0.03 0.03 0.03 0.03 0.04 0.09

Notes: Table shows moments of the distribution of estimates RTS and output elasticities for the Canadian Manufac-
turing Sector. The total number of observations is 436,000.
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Table OA.3 – Average production estimates by industry

Industry NAICS N rtscale melast lelast kelast

Agriculture 11 37,600 1.00 0.53 0.41 0.05

Mining 21 16,500 1.00 0.46 0.44 0.10

Energy 22 2,500 1.00 0.59 0.34 0.07

Construction 23 738,300 1.00 0.55 0.41 0.04

Manufacturing

31 69,100 1.01 0.61 0.37 0.03

32 119,700 1.01 0.59 0.38 0.03

33 247,100 1.00 0.55 0.42 0.03

Wholesale Trade 41 366,400 0.99 0.71 0.26 0.02

Retail Trade
44 614,400 1.00 0.75 0.22 0.02

45 185,400 1.00 0.71 0.27 0.02

Transportation and warehousing
48 109,300 0.99 0.58 0.36 0.05

49 13,300 1.01 0.63 0.33 0.04

Information and cultural 51 39,200 1.00 0.56 0.41 0.04

Finance and insurance 52 33,600 0.65 0.57 -0.05 0.13

Real estate 53 69,100 1.01 0.54 0.40 0.07

Professional Services 54 260,000 0.98 0.48 0.47 0.03

Management of companies and enterprises 55 27,700 1.03 0.59 0.39 0.05

Administrative and support 56 186,800 1.00 0.53 0.42 0.04

Education 61 26,700 0.98 0.51 0.45 0.03

Healthcare 62 111,300 0.59 0.40 0.05 0.14

Arts, entertainment and recreation 71 66,000 0.98 0.51 0.44 0.03

Accommodation and food services 72 552,500 0.99 0.59 0.37 0.04

Other Services 81 427,600 0.77 0.54 0.16 0.06

Notes: The numbers of observations are rounded to the nearest hundreds.

5



Figure OA.1 – Estimated Markups and Firm Revenue
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Notes: Figures OA.1 shows estimated markup across the firm-size distribution. We follow the value-added translog
production function method as in De Loecker and Warzynski (2012). We estimate the production function by indus-
try.In all figures, we sort firms by within-industry revenue ranks and plot the average within ranks. The figure shows
the markup relative to the industry average.
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Figure OA.2 – RTS and Output Elasticities for Canada and the US

(a) Returns to Scale
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(c) Labor
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(d) Capital
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Notes: Figures OA.2 shows returns to scale and output elasticities for the US manufacturing sector, for the Canadian
private sector, and for the Canadian manufacturing sector. In all figures, we sort firms by within-industry revenue
ranks and plot the average within ranks. Panel A shows the returns to scale relative to the industry average.
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Figure OA.3 – Results by Employment and Value Added

(a) RTS and Employment
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(b) RTS and Value Added
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(c) Elasticities and Employment
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(d) Elasticities and Value Added
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(e) Revenue Shares and Employment
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(f) Revenue Shares and Value Added
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Notes: Figure OA.3 shows results sorting firms by within-industry employment ranks (left column) and within-industry
value added ranks (right column). We use the intermediate input and labor costs and the value of the capital stock
to construct the revenue shares.
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Figure OA.4 – Input Revenue Shares Across the Firm Revenue Distribution

(a) Canada Economy
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(b) Canada Manufacturing
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(c) US Manufacturing
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Notes: Figure OA.4 shows revenue shares across the firm-size distribution for Canada and for the US Manufacturing.
In each plot, we sort firms by within-industry revenue ranks and then average the revenue share across all firms
within corresponding percentiles. We use the intermediate input and labor costs and the value of the capital stock to
construct the revenue shares. Results for Canada presented in 5 percentiles groups.
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Figure OA.5 – Profits and Returns to Scale
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Notes: Figure OA.5 plots the relastionship between the returns to scale and the ebita-revenue ratio. EBITA is
computed as total revenue net of intermediate inputs and labor costs. Both variables are demeaned at the industry
level.
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