Scalable versus Productive Technologies®

Joachim Hubmer () Mons Chan () Serdar Ozkan (r) Sergio Salgado (r) Guangbin Hong

First Version: July 11, 2024—This Version: May 6, 2025

Abstract

Are larger firms more productive, more scalable, or both? We use firm-
level panel data from thirteen countries and employ a broad set of methods to
estimate factor elasticities—capturing returns to scale (RTS)—and total factor
productivity (TFP). We find substantial RTS heterogeneity within industries,
with larger firms exhibiting higher RTS driven by greater intermediate input
elasticities. TFP, by contrast, rises with firm size only up to the top decile
before declining. Incorporating RTS heterogeneity into a standard model of
entrepreneurship more than doubles the efficiency losses from financial frictions
compared with a conventional calibration with only TFP differences.
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1 Introduction

The large and persistent firm heterogeneity in total factor productivity (TFP) has
been extensively documented within industries and for different countries and time
periods (see Syverson (2011) for an overview). Seminal models, such as Lucas (1978),
Hopenhayn (1992), and Melitz (2003), attribute firm heterogeneity within industries
primarily to differences in TFP, assuming homogeneous returns to scale (RTS) across
firms. Building on these ideas, the misallocation literature (pioneered by Restuccia
and Rogerson (2008) and Hsieh and Klenow (2009)) quantifies the efficiency costs of
distortions measured from differences in the marginal product of inputs, attributing
the technological heterogeneity to only TFP variation (a notable exception is David
and Venkateswaran (2019)). Further, models of entrepreneurship, such as Cagetti
and De Nardi (2006), incorporate decreasing returns to scale technology with hetero-
geneous TFP to explain differences in rates of return and wealth inequality.

In this paper, we allow for more general heterogeneity in production technologies
among firms by focusing on differences in RTS. Using a broad set of estimation meth-
ods, we document substantial heterogeneity in production technologies across firms.
We then examine whether larger firms have technologies that are more productive
(high TFP) or more scalable (high RTS). Finally, we demonstrate the importance
of this distinction by studying the efficiency costs of misallocation due to financial
frictions—an issue central to a variety of quantitative questions.

In our main empirical analysis, we use administrative panel data for the universe
of incorporated Canadian firms that accounts for over 90% of private business sector
output from 2001 to 2019. This dataset provides detailed balance sheet information,
including revenues and the total cost of labor, capital, and intermediate inputs. To
validate our results, we replicate the analysis for manufacturing plants using U.S.
census data as well as for eleven European countries using the Moody’s Orbis dataset.

In our benchmark approach, we estimate nonparametric production functions
building on Gandhi, Navarro and Rivers (2020) (henceforth GNR), which recovers
output elasticities of labor, capital, and intermediate inputs—thus, RT'S—along with
TFP at the firm-year level. This technique relies on standard assumptions of profit
maximization, adjustment costs, and input choice timing. The common nonhomoth-

etic production function is identified from variation in input expenditure shares and



the covariance between input and output levels, controlling for the endogeneity of
inputs to TFP.

We estimate production functions for each two-digit NAICS industry. Beyond the
well-documented TFP heterogeneity, we notably uncover substantial RTS variation

! The average within-industry difference be-

among firms within the same industry.
tween the 90* and 10"* percentiles (P90-P10) of RTS is 8 percentage points (p.p.).
Interpreted as deviations from constant returns to scale, these differences are large.?
By construction, the heterogeneity in RTS is explained by the dispersion in output
elasticities of inputs. The P90-P10 of elasticities is 0.36 for intermediates and labor
versus 0.08 for capital. Qutput elasticities closely track input revenue shares.?

Our key finding is that RTS increases with firm revenue (and alternatively with
employment or value added), especially for firms above the median. Within industries,
the largest 5% of firms have 8 p.p. higher average RTS than those in the bottom 50%.
This pattern is entirely accounted for by higher output elasticities of intermediate
inputs for larger firms, consistent with Mertens and Schoefer (2024), who emphasize
that firms grow by shifting from labor toward intermediate inputs. In contrast, labor
and capital elasticities generally decline with firm size, though with some variation
across samples and specifications.

Interestingly, TFP increases in firm revenue only up to the 90th percentile, but
then flattens out and declines sharply among the largest firms. In contrast, RTS
continues to rise—convexly—for the top 10%, indicating that the largest firms are
characterized more by their scalability than by higher productivity—challenging the
common assumption in the literature. When counterfactually imposing homogeneous
RTS in the estimation, TFP increases monotonically with firm revenue, underscoring

the importance of allowing for flexible technologies in measuring TFP.

Our GNR approach allows for adjustment frictions and market power for capi-

"While a few papers have documented RTS heterogeneity—across U.S. industries (Gao and
Kehrig (2017)), firms and countries (Demirer (2020)), or over time (Chiavari (2024))—none examine
the joint relation between RTS, TFP, and firm size within industries, which is the focus of our study.

2E.g., in an efficient economy with Cobb-Douglas technology, the elasticity of optimal firm output
to TFP (ﬁ) is five times larger for a firm with RTS of 0.98 compared to a firm with RTS of
0.90. They are also quantitatively important for the costs of financial constraints (Section 5).

3 As expected, the correlation between revenue shares and elasticities is strongest for intermediate
inputs, which we treat as a flexible input in our estimation. For labor and capital, correlations remain
positive but weaker, potentially reflecting adjustment costs or input market power.



tal and labor inputs but not firm-specific markups or factor-biased productivity. It
recovers flexible nonparametric production functions but only a common one within
industries. We address these limitations through complementary approaches. First,
we apply Demirer (2020)’s method, which allows for heterogeneous markups and
factor-augmenting productivity shocks—at the cost of stronger assumptions on the
labor input choice and the functional form of the technology. We find an even steeper
RTSsize gradient.* Second, since our relatively short panel precludes firm-specific
production functions, we cluster firms based on inputs and revenue and estimate
cluster-specific technologies. This approach yields similar results, and also reveals
that the RTS-firm size gradient is driven by variation across, rather than within,
firm clusters, thereby indicating that cross-sectional RTS heterogeneity primarily re-
flects persistent firm characteristics rather than transitory factors.” Third, similar
results with homogeneous relative factor elasticities but heterogenous RTS confirm
that our findings are robust to the flexible functional form in the GNR method.

Our results are remarkably consistent across countries and data sources as well.
While our baseline uses data for the Canadian economy, we find a similarly strong
RTS-size gradient among U.S. manufacturing plants and across eleven European
countries using firm-level Orbis data—the gradient is positive in every single country
and of broadly similar magnitude. The gradient becomes even more pronounced when
we include intangible capital in measuring firms’ inputs.

We also revisit several well-known empirical patterns in firm heterogeneity that
were previously explained by TFP differences. We find that high-RTS firms grow
faster over the life cycle and are less likely to exit compared to high-TFP firms. Ad-
ditionally, high-wage firms tend to have higher RTS. Linking firms to their owners, we
show that wealthier households own firms with more scalable technologies. These sec-
ondary findings highlight the importance of incorporating realistic RTS heterogeneity
for a variety of applications, including wage and wealth inequality.

To investigate the quantitative implications of our findings, we incorporate het-

40ur results are also robust to using output market shares as proxies for unobserved price
elasticities (& la De Loecker et al. (2016)) in our implementation of GNR.

5To support this interpretation, we show that firm fixed effects explain 75% of RTS variation in
our baseline estimates conditional on firm age and size, while an autocovariance analysis attributes
just 11% of the variation to transitory shocks versus 39% and 51% to permanent fixed effects and
the highly persistent component, respectively.



erogeneous RTS into a standard incomplete markets model of entrepreneurship (e.g.,
Quadrini (2000); Cagetti and De Nardi (2006)).° In the model, agents choose whether
to supply stochastic efficiency units of labor or to operate a private business under a
stochastic technology that depends not only on a standard idiosyncratic TFP term
(2) but also on an idiosyncratic RTS term (n).” Entrepreneurs must finance at least a
fraction A of their input expenditures using their own wealth. Our main exercise com-
pares the effects of increasing the financial friction A on output and productivity in
two different economies: the conventional z-economy, where technological heterogene-
ity stems from TFP alone, and the (7, z)-economy, which incorporates heterogeneity
in both RTS and TFP based on our empirical estimates. We calibrate both economies
to match key moments such as the firm-size distribution.

We find that in the (7, z)-economy, financial frictions generate over twice the out-
put losses compared to the z-economy. Static misallocation of inputs accounts for
the bulk of output losses in both economies and is about twice as large in the (7, z)-
economy. To build intuition, we analytically show in a static endowment economy
that a given wedge in marginal products leads to larger misallocation when con-
strained firms have relatively higher RTS—an endogenous feature of our dynamic
model. Dynamic effects further exacerbate output losses in (7, z)-economy, due to
under accumulation of capital and distortions in the selection into entrepreneurship.
Intuitively, a highly productive (high-z) but poor potential entrepreneur can operate
profitably at a small scale, making it easier to grow despite the friction. In contrast,
a highly scalable (high-n) but less immediately profitable business struggles to out-
grow the friction, and the entrepreneur may never enter the market. These results
highlight the critical importance of accounting for RTS heterogeneity for a broad set
of quantitative questions related to misallocation, including capital taxation (e.g.,
Guvenen et al. (2023); Boar and Midrigan (2022); Gaillard and Wangner (2021)).

6To isolate the novel role of RTS heterogeneity, we use this standard framework that ab-
stracts from several empirically relevant features of production, such as intermediate inputs and
pre-determined inputs. We show in model extensions that our findings are robust to introducing
these richer model features, including those employed in our empirical framework.

"To treat RTS symmetrically to TFP, we model 1 as a highly persistent exogenous process,
consistent with our empirical findings. Various microfoundations for RTS differences complement our
analysis, including scalable expertise (Argente et al. (2024)), scale-dependent IT intensity (Lashkari
et al. (2024)), choice of managerial inputs (Chen et al. (2023)), or the industrial revolution in services
(Hsieh and Rossi-Hansberg (2023)).



2 Empirical Methodology

2.1 The Firm’s Problem

We first introduce a general form of the firm’s production setting. Each of the methods
we employ imposes some identifying restrictions on this general model.

Consider firm j in year ¢ that produces output Yj; using capital Kj;, labor Lj;,
and intermediate inputs M, according to Yj, = F;(Kj¢, L, w}{[ M;,)eit. Hicks-neutral
productivity, v;; = wjt + ¢ , is composed of (i) a persistent component, wj;, which
is known to the firm when it makes input decisions in period ¢, and (ii) a transitory
component, €;; (i.i.d. across firms and time with E[e;;] = 0), which is observed after
choosing inputs. Changes in these productivity terms may arise from both technology
shocks and market demand shifts, while the transitory component may also reflect
measurement error in output. Furthermore, w% captures intermediate-augmenting
productivity relative to labor, which is persistent over time and is also known to
the firm when it makes input decisions. We assume that the persistent productivity
components follow a joint exogenous first-order Markov process: P, (wjt, w% | Zjt—1) =
Po(wjt, Wi |wjt—1,w) ), where we define Tj; as the information set available to firm
7 when it makes its decisions in period ¢.

Inputs that are functions of the previous period’s information set, X;(Z;_1), are
defined as predetermined. Inputs that are chosen in period t are defined as variable.
Capital is predetermined and a state variable (K;; € Z;;). Capital may be subject to
arbitrary adjustment costs and financial constraints, and we do not need to assume
that firms choose investment optimally.

Firms are also subject to arbitrary labor adjustment costs. We assume labor is a
dynamic input in that it is a variable input and the firm’s choice of L;; may depend
on its own lagged value, L;,_; € Z;;. We also allow firms to have wage setting power.
Similarly to capital, most of our estimation approaches do not require assumptions
on the optimality of the labor choice or the nature of wage setting.

Finally, given the capital and labor choices, firms maximize short-run expected
profits by selling their output at a price according to a demand function specific to its
industry 4, Pj; = P/(Y}), and buying intermediate inputs in a perfectly competitive

market without adjustment costs or other frictions.



2.2 Estimation Methods

We now outline our estimation methods, specifying how each approach imposes dis-

tinct identifying assumptions on the general model presented above.

2.2.1 GNR Method

Our main empirical approach builds on the GNR methodology, which estimates a flex-
ible nonparametric gross output production function. This technique provides several
advantages. First, it identifies output elasticities for gross output, whereas common
alternatives (e.g., Ackerberg et al. (2015)) typically only identify value-added tech-
nologies. As we show below, variation in the output elasticity of intermediate inputs
is a key driver of variation in RTS. Second, the nonparametric GNR approach mini-
mizes specification error when estimating both output elasticities and TFP. Third, it
allows us to estimate a nonhomothetic production function, where output elasticities
and RTS are functions of inputs, thereby varying across firms and over time—crucial

for understanding the relationship between firm-level TFP, RTS, and size.

Identifying restrictions. We introduce our implementation of the GNR technique
in Appendix A and refer to Gandhi et al. (2020) for technical assumptions. Here, we
specify the substantive restrictions imposed on the general firm problem: (i) Firms
within an industry ¢ have access to a common but flexible nonhomothetic production
function, F;(.) = F(.). (ii) Firms are price takers in the output market, P;;, = P}.

(iii) There are no intermediate input-augmenting productivity shocks, w]].‘f =1.

Identification and intuition.  Although GNR provide a rigorous identification
proof (to which we refer readers), we focus here on the intuition behind our estimation.
Because the intermediate input is flexible (i.e., variable and static), the first-order
condition (FOC) from the firm’s short-run expected profit maximization implies that
the expected intermediate expenditure share equals its output elasticity. Covariation

between the (expected) share and input levels then identifies this output elasticity.®

8Intuitively, if the production function were Cobb-Douglas, the expenditure share would be
uncorrelated with input levels, and its output elasticity would be constant (equal to the mean
share). This direct relationship (from the FOC) holds under the assumption that firms are price
takers in intermediate input markets and do not face adjustment costs when choosing intermediates.



We thus recover the output elasticity of intermediate inputs as a function of input
levels via a nonparametric regression of the revenue share of intermediate expenditure
on inputs. This regression also identifies the ex-post transitory shock: for two firms
with the same input levels, variation in intermediate expenditure shares arises only
from differences in ex-post shocks (through unexpected variation in revenues).

With estimates of the intermediate input elasticity and transitory shocks at hand,
we remove the effects of intermediates and ex-post shocks from gross output, leav-
ing a residual “value-added” function to estimate in the next step.® Because capital
is predetermined and labor is subject to adjustment costs and input market power,
(unknown) wedges arise between expenditure shares and output elasticities, prevent-
ing identification of those elasticities via the FOC approach used in the first step.
Therefore, our second-stage estimation follows the proxy-variable literature (Olley
and Pakes (1996)) in exploiting Markov timing assumptions on the persistent shock
to form GMM conditions. Intuitively, conditional on the previous period’s persistent
productivity (wj;—1), covariations between value added and capital and labor (in-
strumented with its lagged value) inputs identify their output elasticities. Similarly,
conditional on inputs and wj;_;, variation in value added identifies the persistent
shocks. Thus, a high-RTS firm is characterized by a high intermediate input ex-
penditure share, a strong correlation between output and capital or labor, or both,
whereas a high-TFP firm exhibits greater value added conditional on inputs and their

elasticities.

Cobb-Douglas with RTS heterogeneity. The baseline GNR allows for a non-
parametric production function. To investigate whether our findings are sensitive
to this flexible functional form, as a special case, we impose homogeneous relative
output elasticities—within each industry i—while allowing for heterogeneity in RTS:
Fy(Kji, Ljy, M) = (K;}Li%M;&)nﬁ.w The other assumptions are the same as
above. We follow the same two-step estimation procedure and identify firm-year level

n;¢ in the first stage from variation in intermediate input expenditure shares.

9This is a slight abuse of language: for example, our value-added production function does not
contain transitory shocks and is derived by removing the contribution of intermediate inputs to
output (including their interactions with capital and labor).

10T this specification, a normalization is required between the sum of the three output elasticities,
ek +er + em, and n;;. We normalize ex + €1 + ep = 1, so that 7;; denotes RTS.

7



2.2.2 Clustering firms

In our baseline estimation method based on GNR, we assume that all firms j within
an industry ¢ share the same nonparametric production function, Fj(.) = F'(.). Firms
differ in their factor elasticities, and therefore in RTS, because they operate at differ-
ent points in the input space. Later, we show that these differences are highly per-
sistent, reflecting persistent technological differences across firms. Ideally, we would
estimate a separate production function for each firm, but this is infeasible given the
short panel. Instead, we group firms with similar features as a practical alternative.

We use two clustering strategies. First, given the importance of input shares
in identifying factor elasticities, we apply a k-means algorithm to group firms into
20 clusters based on their average revenue shares of the three inputs and their av-
erage within-industry revenue percentile. Second, to capture persistent technology
differences across firms with different growth trajectories, we group firms by their
maximum revenue percentile attained over their life cycle. Specifically, within each
industry, we compute a firm’s revenue rank each year and assign it to one of 11 bins
based on its highest lifetime rank: 1-10, 11-20, ..., 91-95, and 96-100. Firms with
fewer than 10 years of data are excluded to minimize selection bias. Under both
clustering approaches, a firm remains assigned to the same cluster throughout its life.

For each clustering approach, we estimate production functions using the non-

parametric GNR method, and using a traditional Cobb-Douglas specification:

1. GNR: For firm j in cluster k, the production function becomes F;(.) = F*(.), a

nonparametric production function estimated at the cluster level.

2. Cobb-Douglas case: For firms j in cluster k, we impose a Cobb-Douglas func-
tional form, Fj(.) = KjFLO*M

i, where the elasticities ax, [k, and 7; are
common within each cluster. Consequently, firms within a given cluster also

share a common RTS, determined by the sum oy + 55 + V&-

2.2.3 Demirer Method

Finally, we estimate TFP and RTS using the method developed in Demirer (2020).
Unlike our GNR specification, this approach allows for factor-augmenting produc-

tivity shocks and firm-level price-setting (markups) in output markets. Yet, it re-



quires several stronger assumptions on production and input choices: (i) Firms j
in industry i share a common, weakly homothetic separable production function
F'(Kj, h'(Lje, wlf Mj;)) where h' is homogeneous in both inputs and w is intermediate-
augmenting productivity. (ii) Both M;, and Lj; are flexible inputs, optimally chosen,
and firms are price takers in both input markets. (iii) Firms have price setting power
in output markets via a demand function Pj; = P/(Y};). We refer readers to Demirer

(2020) for additional technical assumptions.

Identification and intuition. To identify the production function with the addi-
tional dimension of heterogeneity relative to GNR, Demirer (2020) assumes homoth-
etic separability between capital and a composite of labor and intermediate inputs,
treating both as flexible inputs. He adopts a control-variable approach to address
endogeneity in the presence of the two unobserved productivity components. First, a
control variable for relative factor-augmenting productivity is constructed using cap-
ital and the flexible input ratio: under homothetic separability, this ratio is strictly

monotonic in w% ,

conditional on capital, and independent of Hicks-neutral produc-
tivity. Second, a control variable for Hicks-neutral productivity is constructed using
capital, intermediate inputs, and the control variable for intermediate-augmenting
productivity.

Conditional on these control variables, capital and composite input elasticities
are identified from their covariation with output. Finally, since both labor and in-
termediates are flexible, Demirer exploits the two FOCs to link the ratio of their
output elasticities to the ratio of observed expenditure shares, allowing for separate

identification of labor and intermediate elasticities.

3 Data and Sample Selection

Our main dataset is the Canadian Employer-Employee Dynamics Database of Statis-
tics Canada (CEEDD), a set of linkable administrative tax files covering the universe
of tax-paying Canadian firms and individuals from 2001 to 2019. We obtain balance

sheet and income statement information from the National Accounts Longitudinal



TABLE I — SUMMARY STATISTICS FOR THE BASELINE SAMPLE

Log of Mean Median St.dev P10 P50 P90 P99
Revenue 13.73  13.54 1.39 12.13 13.54 15.60 17.75
Intermediates 13.18 1299 1.52 1141 1299 15.21 17.46
Wage bill 12.35  12.19 1.30  10.82 12.19 14.07 16.04

Capital stock 11.29  11.26 1.82 9.02 11.26 13.54 1597

Notes: Table I shows cross-sectional moments of the distributions of log values for revenue, intermediate inputs, wage
bill, and capital. All variables are in 2002 Canadian dollars. The total number of observation is 4.3 million firm-years.

Microdata File, which covers all incorporated firms.!!

Revenue and wage bill vari-
ables are constructed by Statistics Canada based on corporate tax return line items
and are consistent with the national income and product accounts. We construct
total tangible capital using the perpetual-inventory method (PIM), starting from the
first book value observed in the data, annual tangible capital investment, and amor-
tization. Intermediate inputs are calculated as the sum of operating expenses and
costs of goods sold net of capital amortization. All nominal values are deflated to
2002 real Canadian dollars. See Appendix C.1 for further details.

To construct the estimation sample, we start from firm-year observations with
nonmissing values for revenue, capital, wage bill, intermediate inputs, and industry
code. To ensure reliable PIM capital estimates, we include only observations with at
least two prior years of capital data. We further drop observations with outlier factor
shares: (i) wage-bill-to-revenue or wage-bill-to-value-added ratios below the 1st or
above the 99th percentile; (ii) intermediate-input-to-revenue ratios outside [0.05, 0.95];
and (iii) capital-to-revenue ratios above the 99.9th percentile. After sample selection,
our dataset comprises 4.3 million firm-year observations and 620,000 firms, with an

average of 6.9 observations per firm. Summary statistics are reported in Table I.

U.S. manufacturing sector. As a robustness exercise, we conduct a similar analy-
sis using data from the U.S. Economic Census and the Annual Survey of Manufactures
(ASM), widely used in the literature on firm-level productivity in the U.S. (e.g., Foster
et al. (2001) and Bloom et al. (2018)). This dataset contains detailed information on

ILCEEDD also covers all unincorporated firms—typically small businesses owned by self-employed
individuals—accounting for 9.5% of GDP in 2005 (Baldwin and Rispoli (2010)). We exclude unin-
corporated firms because they do not report capital stock.

10



over 60,000 manufacturing plants between 1974 and 2019. Unlike our Canadian data,
it does not cover the full universe of firms but a representative panel of manufacturing
plants, redrawn every five years. We restrict the sample to plants with at least two
years of nonmissing data for key variables, resulting in 3.1 million establishment-year
observations. Revenue is measured by the total value of shipments. The Census also
reports real capital stock (measured using the PIM), total wages of all plant work-
ers, and expenditures on intermediate inputs, all expressed in 2019 U.S. dollars. We

discuss additional details in Appendix C.2.

Moody’s Orbis dataset. We further complement our analysis using data from
eleven European countries including Germany, France, [taly, and Spain. This dataset
provides harmonized information on revenues, wage bill, capital stock, and interme-
diate inputs (all in 2019 prices) for a large sample of private and public firms across
industries. For most countries, data coverage spans 2005-2019.'2 See Appendix C.3

for additional details.

4 Empirical Results

We apply our baseline methodology to each of the 23 two-digit NAICS industries in the
Canadian administrative data, estimating the output elasticities of inputs and TFP
for all firm-year observations (see Table A.1 for the list of industries and summary
statistics). We begin by presenting the unconditional moments of these parameters,
then explore how they vary across the firm-size distribution. We highlight key data
patterns that illustrate the identification argument discussed in Section 2.2.1. In
Sections 4.3 and 4.4, we show that our key result on RTS heterogeneity is robust
to alternative estimation methods and samples. Finally, we relate our findings to
broader debates on firms’ life-cycle growth and on wage and wealth inequality in
Section 4.5.

12We use the 2021 vintage of Orbis, accessed through Wharton Research Data Services. In
practice our data cover from the early 1990s to 2019 with substantially better coverage starting in
2005. For detailed information on constructing a consistent dataset, see Kalemli-Ozcan et al. (2024).
Data on intermediate inputs and capital stock are available only for a subset of eleven countries.

11



TABLE II — DISTRIBUTION OF PRODUCTION FUNCTION ESTIMATES

Mean St. dev P10 P50 P90 P99

Panel A: Main Estimates
TFP — 0.17 -0.18 0.00 0.17 0.52
RTS 0.96 0.04 0.92 0.95 1.00 1.08
Panel B: Output Elasticities
Intermediates 0.59 0.15 0.42 0.59 0.78 0.99
Labor 0.33 0.15 0.14 0.33 0.50 0.66
Capital 0.04 0.03 0.00 0.03 0.08 0.13
Panel C: Input Shares
Intermediates 0.61 0.18 0.36 0.61 0.85 0.93
Labor 0.29 0.15 0.11 0.28 0.50 0.72
Capital 0.23 0.48 0.01 0.09 0.51 2.16

Notes: Table II shows cross-sectional moments of the distributions of firm-level log TFP, RTS, and the elasticities
of output with respect to intermediate inputs, labor, and capital. To obtain these estimates, we apply our baseline
method (GNR) within two-digit NAICS and calculate the cross-sectional moment within the same cell. Then we
average across all estimated values weighting by the number of observations in each cell. The total number of
observation is 4.3 million firm-years. To compare TFPs across industries, we normalize its median to zero within each
industry.

4.1 Unconditional Heterogeneity in Production Technologies

To examine unconditional heterogeneity in firm technologies, we calculate within-
industry moments from firm-level estimates for each year, then average across indus-
tries and time. Table II reveals considerable heterogeneity in output elasticities, RT'S,

and TFP across firms.

RTS heterogeneity. Starting with the within-industry RTS distribution, we find
an average of 0.96 with a 90'"-to-10"" percentile gap (P90-P10) of 0.08.'* This implies
that with a 1% larger input bundle, the firm at the 90" percentile produces about
8.3% more output than the firm at the 10" percentile, holding TFP constant. These
differences are quantitatively important when interpreted as deviations from constant

returns to scale. For instance, in an efficient economy with Cobb-Douglas production,

13Consistent with earlier studies (e.g., Basu and Fernald (1997); Ruzic and Ho (2023); Gao and
Kehrig (2017)), we also find substantial differences in average RTS across industries (see Table A.1),
ranging from 0.59 (for Healthcare) to 1.03 (for Management of Companies and Enterprises).

12



FIGURE 1 — AVERAGE OUTPUT ELASTICITIES BY FACTOR SHARES OF REVENUE
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Notes: Figure 1 shows the relation between the input revenue shares defined as the ratio between the total cost of
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averages of estimated output elasticities, demeaned within two-digit NAICS industry.

the elasticity of optimal firm output to firm TFP is t—=<. This elasticity is five times
larger for a firm with RTS of 0.98 compared to one with RTS of 0.90.!* Dispersion
is more pronounced above the median: the average within-industry P50-P10 is 0.03
compared to 0.05 for P90-P50 and 0.13 for P99-P50. The average 90th percentile for
RTS across industries is 1.00; that is, most firms operate decreasing returns to scale
technologies, yet some exhibit annual RTS above 1.1°

By construction, differences in RTS arise from heterogeneity in output elastici-
ties. As shown in Panel B of Table II, intermediate inputs have the highest average
output elasticity at 0.59, followed by labor at 0.33 and capital at 0.04.!% Labor and
intermediate input elasticities also show larger within industry variation than capital

elasticities, with average P90-P10 gaps of 0.36 for intermediates and labor versus 0.08

14\We validate this prediction in the data by showing that high-RTS firms’ revenues respond more
strongly to aggregate TFP shocks (Table A.7).

I5RTS is not fixed over time, and firms are subject to adjustment costs. Thus, increasing returns
to scale do not imply unbounded expansion. Furthermore, other studies commonly estimate RTS
above 1 for some industries or firms as well (e.g., Gandhi et al. (2020) and Demirer (2020)).

16Qur estimated average capital elasticity is lower than typical estimates because, following the
literature, we construct the capital stock using the PIM and include only tangible capital such as
structures and equipment. This excludes other forms of capital typically included in the aggregate
measure of capital, such as intangible capital and inventories. When we estimate the production
function using a broader capital definition based on net asset values from balance sheets, the average
intermediate, labor, and capital elasticities become 0.58, 0.30, 0.12, respectively.
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for capital. Variance decompositions show that over 60% of the variation in each out-
put elasticity is explained by within-industry differences (Table A.2), whereas only
about a quarter of the variance in RTS is accounted for by within-industry differ-
ences. This partly reflects a negative correlation between intermediate input and

capital/labor elasticities within industries (Table A.3).

Output elasticities and input shares. Following the identification argument in
Section 2.2.1, we now present the key data features driving our empirical results.
Typically, output elasticities closely reflect their corresponding revenue input shares.
In fact, for profit-maximizing firms with Cobb-Douglas production functions and
flexible inputs, output elasticities are exactly equal to (average) input shares. Our
specification is more general, and the GNR method does not solely rely on the FOCs
of profit-maximizing firms. Nevertheless, output elasticities tend to be close to factor
shares (Panels B and C of Table II) and positively correlated with them.

Figure 1 shows a bin scatter of (demeaned) output elasticities for all three inputs
on the y-axis conditional on a different input share on the z-axis in each panel. Across
all inputs, output elasticities are strongly correlated with their respective input shares:
intermediate input-intensive firms have higher intermediate input elasticities, labor-
intensive firms have higher labor elasticities, and capital-intensive firms have higher
capital elasticities. The correlation is particularly strong for intermediate inputs,
as expected, since we treat them as flexible and use the firm’s FOC to estimate
intermediate input elasticities. In contrast, for labor and capital, our estimation
does not rely on FOCs. Nevertheless, we find strong positive correlations for these
inputs as well. These patterns support the identification intuition in Section 2.2.1:
heterogeneity in output elasticities, and thus in RTS, largely reflects differences in
input shares. They also suggest that high-RTS firms should have relatively low profit
shares, which we confirm in the data by showing the negative correlation between the
EBITDA-to-revenue ratio and RTS across firms (Figure A.5).

TFP dispersion. We find that the P90-P10 gap in firm-level TFP is 0.35, implying
that a firm at the 90 percentile produces about 41.9% more output than a firm at the
10*" percentile, conditional on inputs and output elasticities. This gap is substantially

smaller than previous estimates even for narrow six-digit industries in Canada and
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FIGURE 2 — RTS AND INTERMEDIATE INPUT ELASTICITY INCREASE WITH FIRM SIZE
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Notes: Figure 2a shows the average RTS across quantiles of the firm-revenue distributions, using both pooled and
within-industry percentiles. RTS is demeaned by the pooled average (average RTS of 0.96) in the former and by
industry averages in the latter. Figure 2b presents the estimated output elasticity and the observed revenue share of
intermediate inputs, both demeaned by industry averages, across quantiles of the within-industry revenue distribution.

the U.S., where typical P90-P10 TFP gaps are about twice as large (e.g., De Loecker
and Syverson (2021) and Syverson (2011)). Two factors explain the difference: first,
we estimate a flexible nonparametric production function that allows for differences
in RTS; second, we use the wage bill rather than headcount or hours as the measure

of labor input (see Fox and Smeets (2011)).

4.2 Production Technologies over the Firm-Size Distribution

Returns to scale by firm revenue. We now turn to the systematic variation in
RTS across the firm revenue distribution. To this end, we pool all firm-year estimates
from 23 two-digit NAICS industries. Figure 2a shows bin scatter plots of (demeaned)
average RTS by firm revenue using two ranking methods. First, we pool firm-year
observations across all industries and rank them into revenue percentiles. We find
that RTS is relatively flat across the bottom two-fifths of firms but increases sharply
for larger firms in the economy. Average RTS rises by about 10 p.p. from the bottom
to the top of the revenue distribution, primarily above the median.

Part of the variation in our pooled ranking may reflect differences across industries.
For example, manufacturing firms, which tend to have higher RTS and larger revenues,

are overrepresented at the top. Therefore, to isolate within-industry patterns, we
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calculate within-industry revenue percentile rankings. This approach reveals similar
patterns: RTS is roughly constant below the median and increases steeply among
larger firms within industries, with an 8 percentage point gap between the top 5%
and the bottom half. Thus, most of the observed variation in RTS by firm size is

driven by differences within industries, rather than across industries.

Output elasticities by firm revenue. Our analysis shows that the positive rela-
tionship between RTS and firm revenue is entirely driven by the intermediate input
elasticity (Figure 2b). The intermediate input elasticity increases monotonically from
-0.09 (relative to the industry average) for firms in the bottom 5% of the revenue dis-
tribution, to approximately zero around the median, and up to 0.09 for firms in the
top 5%. This 9 p.p. gap in intermediate input elasticities between the top 5% and
median firms fully explains the corresponding 8 p.p. gap in RTS over the same range.
Figure 2b also shows that the intermediate input revenue share mirrors this pattern,
with larger firms allocating a higher share of their revenue to intermediate inputs
compared to smaller firms. This result is expected, as our estimation treats interme-
diate inputs as a flexible factor.!” Consistent with our findings, in a contemporaneous
study Mertens and Schoefer (2024) use a setting with homothetic production func-
tions and imperfect input markets to show that firms grow by shifting from labor
to intermediate inputs. Finally, capital and labor elasticities decline slightly with
firm revenue (Figure A.2), underscoring the importance of estimating gross output
production functions: relying on value-added specifications may lead to misleading

conclusions about firm-level technologies.

Total factor productivity by firm revenue. We next investigate whether larger
firms also exhibit higher TFP. Since TFP levels are not comparable across industries,
we focus on firms’ relative productivity ranks within industries. Figure 3a displays
the average within-industry TFP percentile by within-industry revenue percentile.
We find that relative TFP increases with firm size up to the top decile of the
revenue distribution, after which it flattens out. In fact, zooming in on the top 10%,

we find that TFP falls off sharply for the largest firms (Figure 3b). In contrast,

"Note that the intermediate elasticity does not equal its revenue share because of the ex-post
shock €. See Appendix A for details.
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FIGURE 3 — FIrRM TFP FLATTENS OUT AT THE TOP OF THE FIRM SiZE DISTRIBUTION
(A) Entire Revenue Distribution
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Notes: Figure 3a shows the average firm TFP rank within percentiles of the within-industry revenue distribution.

100
The TFP rank is calculated within each industry. Figure 3b zooms in on the top 10% of the revenue distribution.
RTS increases even more steeply among the largest firms (Figure A.6). Thus, the
largest firms tend to feature the highest RTS—mnot necessarily the highest TFP—as
commonly assumed.

A few papers have studied the TFP-size relation (see Leung et al. (2008) or Bald-

win et al. (2002)). Our results on the TFP-revenue gradient differ from these studies

because we allow for heterogeneity in production technologies.

To illustrate this,
we reestimate a standard Cobb-Douglas production function imposing homogeneous
RTS: Y} = e”ﬂ'tKﬁiLfZMJ;, where j and ¢ denote firms and industries, respectively.
As expected, under this restriction TFP increases monotonically with firm size (Fig-
ure A.8). This contrast highlights the importance of allowing for flexible production

technologies in understanding the relationship between firm-level TFP, RTS, and size.

4.3 Robustness and Interpretation

Our benchmark method, GNR, relies on several identifying assumptions, such as
firms being price takers in output markets. In this section, we relax some of these
assumptions and apply alternative methods (described in Section 2.2) to show that our
key result—Ilarger firms operate technologies with higher RTS—is robust. Table III
summarizes the RTS gap between the largest 5% of firms and bottom 50% for different
methods and samples. Figure 4 highlights a subset of these results by showing the

RTS-firm size relationship for the most important alternative specifications.
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FIGURE 4 — RTS INCREASES WITH FIRM SIZE FOR DIFFERENT SPECIFICATIONS
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Notes: In the cluster specification, we apply the k-means clustering algorithm (20 clusters) based on revenue percentile
and revenue shares of the three factors for firms within each industry and estimate the nonparametric production
function following GNR within clusters. In all specifications, we sort firms based on revenue within industry, and RTS
is demeaned by industry averages.

4.3.1 Markups and Market Power

Our RTS estimates are based on revenue elasticities of the three inputs. A key concern
in the literature (e.g., Bond et al. (2021)) is that identifying revenue-based or phys-
ical production functions typically requires either price and quantity data or strong
parametric assumptions about demand and technology. In particular, using revenue
data alone may lead to unknown biases in estimates of markups and output elas-
ticities. However, recent evidence (e.g., De Ridder et al. (2022)) suggests that such
biases are modest in practice and that relative variation in markups and elasticities
is well identified even with revenue-based data. Consistent with this view, we show
that relative variation in RTS—our main object of interest—is robust across multiple
estimation methods. Specifically, we present three sets of theoretical and empiri-
cal arguments supporting our interpretation that the observed positive relationship
between RTS and firm size primarily reflects technological differences, rather than
variation in markups (e.g., De Loecker et al. (2020)), or monopsony markdowns (e.g.,
De Loecker et al. (2016) and Burstein et al. (2024)).
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TABLE III — RTS INCREASES WITH FIRM SIZE FOR DIFFERENT SPECIFICATIONS

Average RTS

Method Specification (vs. baseline) RTS Gap
GNR Baseline (Canada, by industry) 0.96 0.08
Demirer (2020) Same as baseline 0.78 0.10
Cobb-Douglas + RTS Het. Same as baseline 1.00 0.08
GNR Include intangible capital 0.89 0.20
GNR Cluster by factor sh. and revenue pct. 0.93 0.10
Cobb-Douglas Cluster by factor sh. and revenue pct. 0.85 0.14
GNR Cluster by max. firm size 0.95 0.08
GNR Only manufacturing industries 1.00 0.04

Notes: Each row reports the average RTS and the average within-industry RTS gap between the largest (revenue-wise)
5% and the bottom 50% of firms for one specification. Intangible capital is constructed using PIM. See Section 2.2
for a discussion of the estimation methods and clustering approaches.

Role of markups. First, if larger firms charge higher markups or markdowns—as
implied by models with oligopolistic competition (e.g., Atkeson and Burstein (2008))
or monopolistic competition under log-concave demand systems (e.g., Edmond et al.
(2023))—then physical RTS would increase even more strongly with firm size than
revenue-based RTS. This follows because the physical output elasticity equals the
revenue elasticity multiplied by the firm’s markup (adjusted for markdowns). We
directly estimate firm-level markups following De Loecker and Warzynski (2012) and
find that markups increase with firm revenue in our data (Figure A.1)—consistent
with De Loecker et al. (2020)— indicating that the size gradient is larger for physical
RTS than for revenue-based RTS.

Controlling for market power. Second, while our baseline method permits mark-
downs in capital and labor markets, it does not account for markups in output mar-
kets or markdowns on intermediate inputs. We then extend the GNR approach to
explicitly control for both types of market power using firms’ output market shares
as proxies for unobserved price elasticities (following De Loecker et al. (2020) and
De Loecker et al. (2016)). Relaxing the perfect competition assumption, we allow
firms to face downward-sloping demand and adjust the FOC for intermediate inputs

accordingly.'® If markups (or markdowns) are a significant determinant of input ex-

18This is an exact control if demand takes the common (nested) logit or CES forms. De Loecker
et al. (2020) use this approach to control for unobserved output prices while De Loecker et al. (2016)
apply it to control for unobserved intermediate input prices. Following them, we use a cubic function

19



penditure shares, we should find that our estimates of the intermediate input elasticity
are sensitive to the inclusion of these controls. Controlling for market share barely
changes the size gradient of the intermediate input elasticity (Figure A.10), the main

driver of RTS differences along the firm-size distribution.

Demirer method. Third, we apply Demirer (2020)’s method, which explicitly al-
lows for heterogenous markups across firms (while imposing stronger assumptions on
labor input choices and functional form of the production function). Despite these
differences, the estimated RTS-size gradient remains robust and, if anything, becomes
even steeper: RTS increases by about 10 percentage points from the bottom half to
the top 5% of the firm-size distribution (Figure 4). These results are consistent with
the view that physical RTS increases more strongly with firm size than revenue-based
RTS, as expected if markups increase with firm revenue—a relationship we confirm

again using the Demirer methodology (Figure A.1).

Factor-augmenting productivity shocks. Another potential concern is that
larger firms may have higher intermediate input elasticities simply because they
use intermediate inputs more efficiently, reflecting factor-specific productivity shocks.
Since our results remain robust under Demirer (2020)’s method, which accommodates

factor-augmenting productivity shocks, this concern is likewise alleviated.

4.3.2 Permanent versus Transitory Differences in RTS

Our benchmark GNR method estimates a flexible but common production function
across firms within an industry, allowing firms to differ in their output elasticities
based on their positions in the input space. A natural question, therefore, is whether
the observed dispersion in RT'S reflects permanent differences in production technolo-
gies across firms or merely transitory fluctuations around a common structure. The
distinction is important because, for example, for models of the firm-size distribu-
tion (e.g., the literature that follows Lucas (1978) and Hopenhayn (1992)) not only

the magnitude of heterogeneity but also its persistence is crucial (e.g., Sterk et al.

of market shares (defined at the two-digit NAICS). Since period-t market shares may be correlated
with transitory productivity shocks, we estimate a modified first-stage equation with GMM using
lagged market shares as instruments for current shares. See Appendix A.1 for details.
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(2021)). We present three complementary sets of results suggesting that the bulk
of RTS heterogeneity reflects persistent firm characteristics rather than transitory

factors.

Fixed effects regression. First, we regress RTS estimates from our baseline GNR
method on firm size, firm age, time dummies, and firm fixed effects. Intuitively, if
differences in RTS are largely permanent, firm fixed effects should absorb most of the
variation. This is exactly what we find: of the total RTS variance of 0.0522, firm fixed
effects (with a variance of 0.045%) account for 75% of the variation when controlling
for firm age and size. We find similarly strong persistence in the U.S. manufacturing
sector: RTS has a variance of 0.058% and fixed effects account for 65% of the total

variation after controlling for other firm observables.

Autocovariance structure. Second, following the earnings dynamics literature
(e.g., Abowd and Card (1989); Karahan and Ozkan (2013)), we exploit the autoco-
variance structure of the RTS estimates to decompose firm-level RTS into a firm-
specific fixed effect, a persistent AR(1) component, and a fully transitory component
(see Appendix D for details). Consistent with the fixed effects results, only 10.5% of
the total RTS variance is attributable to purely transitory shocks. Firm fixed effects
and the highly persistent component (with an estimated persistence parameter of
0.94) account for 38.9% and 50.6% of the total variation, respectively.

Clustering analysis. While estimating firm-specific production functions would be
ideal, it is not econometrically feasible given the relatively short panel. As a practical
alternative—detailed in Section 2.2.2—we cluster firms within industries based on in-
put shares and revenue percentiles, and estimate cluster-specific production functions
using both the nonparametric GNR specification and a more restrictive Cobb-Douglas
form. In both cases, the RTS-size gradient remains strong. Under the GNR specifi-
cation, RTS rises by nearly 10 p.p. from the median to the top 5% of firms within
industries, consistent with baseline findings. Under the Cobb-Douglas specification,
the increase is even larger—14 p.p. between the bottom half and the top 5%.

To further distinguish persistent type effects from size effects, we group firms

based on their maximum revenue attained over their life cycle and track the RTS
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evolution within and across clusters. If RTS differences purely reflect persistent firm
types, we would expect large level differences across clusters but flat within-cluster
size gradients. If instead RTS differences are driven by scale-dependent nonhomoth-
eticities, we would observe positive size gradients within clusters. Regressions of RTS
on log revenue support the persistent firm type interpretation: without cluster fixed
effects, the size gradient is 0.012 (capturing pooled variation); when including cluster
fixed effects, the gradient drops to —0.001. Moreover, the pattern of average RTS by
firm size remains very similar to our baseline pooled estimates, with a gap of about
8 p.p. between the largest 5% and the bottom 50% of firms (Figure A.9).

Taken together, these three sets of results indicate that the observed heterogeneity
in RTS is primarily driven by persistent differences between firms, consistent with the

endogenous entrepreneurship model with heterogeneous RTS in Section 5.

4.3.3 Cobb-Douglas with RTS Heterogeneity.

Another potential concern is that our results may be sensitive to the flexible functional
form assumed in the GNR method. To address this, we reestimate the production
function by imposing homogeneous relative factor elasticities while still allowing for
RTS differences, i.e., Fji(Kjt, Ljt, Mji) = (K;tK Lt Mjst"/’)njt. Consistent with our base-
line findings, the Cobb-Douglas series in Figure 4 shows that RTS increases with firm
size by about 10 p.p., with a steeper rise in the bottom half of the revenue distribution

and a more moderate increase among the largest firms relative to our baseline.

4.4 International Evidence and Further Robustness

Our results are also robust across multiple samples and alternative specifications.
We find similar patterns when analyzing U.S. manufacturing plants, firms in eleven
European countries, and when incorporating intangible capital into the measurement
of the capital stock. The relationship between RTS and firm size also remains robust

under alternative ways of ranking firms within industries.

U.S. manufacturing. Our results are not unique to the Canadian economy but also
hold for the U.S. manufacturing sector. Figure 5a shows the RT'S-revenue relationship

at the plant level, relative to the four-digit NAICS industry average. The pattern is
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U-shaped, with a notable steep increase at the top: RTS rises by about 9 p.p. from
the 50th percentile to the top 1% of the revenue distribution. For comparison, we
include a corresponding series for Canadian manufacturing in the same figure. Both
sectors display similar U-shaped patterns, but the increase in RT'S among the largest
plants is more pronounced in the U.S., consistent with the longer right tail of the U.S.
manufacturing size distribution (Leung et al., 2008).

Remarkably, as in Canada, the increase in RTS is primarily driven by a rise
in the output elasticity of intermediate inputs, which increases from about 0.35 at
the bottom of the size distribution to around 0.55 for the largest U.S. plants (Figure
A.2b). Furthermore, labor elasticities decline steadily with firm revenue, while capital
elasticities decline up to the 90th percentile and then rise slightly among the very
largest plants (Figure A.2). Revenue shares of labor, capital, and intermediate inputs
across the revenue distribution also exhibit remarkably similar patterns between U.S.
and Canadian manufacturing, and more broadly among all Canadian corporations
(Figure A.4).

Our U.S. manufacturing production function estimates are at the plant level,
whereas the Canadian data are measured at the firm level, which aggregates over
multiple plants. In the Canadian data, we find that RTS increases significantly with
the number of plants per firm (Figure A.7). However, controlling for the number
of plants only slightly attenuates the RTS-revenue gradient: regressing demeaned
RTS on log firm revenue yields a coefficient of 0.012, which drops modestly to 0.010
when controlling for plant count. Together with the U.S. manufacturing evidence,
these results suggest that variation in RTS by firm revenue is not primarily driven by
differences in the number of plants, but rather by systematic differences in production

technologies across individual plants.

International evidence. Our results extend to several other countries using firm-
level data from the Orbis database. Figure 5b shows estimates based on our baseline
GNR method, applied within 2-digit NAICS industries across countries. We sum-
marize the findings by plotting the average RTS difference between the top 5% and
bottom 50% of the within-country-industry revenue distribution. The results are re-
markably consistent across countries, with RTS differences ranging from about 7 p.p.

in Germany to 15 p.p in Finland. Canada falls near the middle of this distribution,

23



FI1GURE 5 — THE PosiTivE RTS-FirRM SiZzE GRADIENT IS ROBUST ACR0OSS COUNTRIES
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Notes: Figure 5a plots average RTS (demeaned by industry averages) against within-industry revenue percentiles for
Canadian and U.S. manufacturing, as well as for the baseline economy-wide Canadian sample. Canadian results are
shown within 5% quantiles of the revenue distribution. Figure 5b compares the within-industry RTS gap between the
top 5% and bottom 50% of firms across 11 countries using Orbis data, including Canada for reference.

with similar patterns observed for other large European economies such as France and
Italy. Consistent with our main results, we find that the intermediate input elasticity
also increases strongly with firm size across countries (Figure A.11). Last, we apply

the Demirer methodology to the Orbis data and find similar results (Figure A.12).

Intangible capital. We also analyze the importance of including intangibles in
our measure of firms’ capital stock and reestimate their production functions using
Canadian data. In theory, including intangibles affects measured productivity, the
output elasticity of capital, and therefore RTS. In particular, if larger firms invest
disproportionally more in intangible capital, omitting intangibles would understate
their capital elasticity (and thus RTS) and overstate their TFP. Consistent with this
intuition, we find that the positive relationship between firm size and RTS becomes
even stronger when intangible capital is included. As shown in Table III, the P95—
P50 RTS gap increases from 0.08 in the baseline to 0.20 when intangible capital is

incorporated.

Ranking firms by employment or value added. Appendix Figure A.3 presents
the results when ranking firms, within industry, by employment or value added rather

than by revenue. While the patterns for RTS are similar, the output elasticities
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display distinct variations: firms with high employment or high value added ex-
hibit higher labor elasticities, whereas the intermediate input elasticity shows only
a small increase among the largest firms. This pattern arises mechanically from the
ranking criterion: firms with high employment or value added are, by construction,
more labor-intensive. Therefore, we prefer to rank firms by revenue—a factor-neutral

approach—in our primary analysis.

4.5 Implications for Firm Dynamics and Inequality

We now revisit several well-known empirical patterns in firm heterogeneity that have
traditionally been attributed to TFP differences. For example, the literature has
argued that firms with higher TFP grow faster (e.g., Sterk et al. (2021)), pay higher
wages (e.g., Kline (2024)), and are disproportionately owned by wealthier households
(e.g., Quadrini (2000); Cagetti and De Nardi (2006)). In this section, we argue that

RTS differences are at least as important in explaining these empirical patterns.

4.5.1 Firm Dynamics

Heterogeneity in RT'S has significant implications not only for the firm size distribu-
tion but also for firms’ growth trajectories over the life cycle. Firms with higher RTS
are expected to grow faster to reach their larger optimal sizes, compared to firms
with similar TFP but lower RTS. To analyze these life-cycle patterns, we construct
a balanced panel of Canadian firms from our baseline estimates and group firms by
their initial production function characteristics. Specifically, we focus on firms born
between 2002 and 2005 that are observed for 12 consecutive years. We group firms
based on their initial RTS and initial TFP, demeaned at the industry level. We then
track their average log revenue, again demeaned within industries, over their life cycle
(Figure 6).

Firms with higher initial RTS and TFP start with higher revenues relative to their
industry peers. More importantly, firms with higher initial RTS (Panel A) exhibit
significantly faster growth: firms in the top 10% of the initial RTS distribution grow
about 30 log points over 10 years, whereas firms in the bottom 90% grow by only
about 20 log points. This evidence supports our interpretation that high-RTS firms

operate more scalable technologies, enabling substantially greater life-cycle growth.
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FIGURE 6 — LIFE CYCLE OF FIRMS STARTING WITH DIFFERENT RTS AND TFP

Average Log Revenue
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Notes: Figure 6 compares the life-cycle profile of revenue between firms with different initial RTS (Figure 7a) and TFP
(Figure 7b). They are constructed using a balanced panel of firms which (i) are born between 2002 and 2005 and (ii)
survive for at least 12 years. We demean firms’ initial RTS at the two-digit NAICS industry level. We bin firms into
three groups based on their initial demeaned RTS in the left panel and three groups based on initial within-industry
TFP percentiles in the right panel. Firm log revenue is also demeaned at the two-digit NAICS industry level.

We also rank firms by their average growth rates over 12 years and find that the top
1% fastest-growing firms (“gazelles”) exhibit an average RTS of 0.98 compared to
0.95 among those below the 90th percentile. Similarly, Guntin and Kochen (2025)
recently show that a firm dynamics model with ex-ante heterogeneity in production
functions is required to explain empirical life cycle trajectories of the largest firms.

In contrast, Panel B shows that firms entering with high TFP, while initially
larger, do not grow faster than other firms in their industry. Indeed, higher initial
TFP is associated with slightly lower subsequent growth, which can be explained by
TFP being a mean-reverting process. These finding suggest that highly productive
firms might have low RTS, which constrains their growth (Hurst and Pugsley (2011)).

While these results focus on surviving firms, we also examine the effects of RTS
and TFP heterogeneity on firm exit. We estimate probit regressions of firm exit on
TFP percentile and RTS (Table A.6). Across specifications, higher RTS is associated
with a lower probability of firm exit. The effect of TFP on firm exit is smaller, and
varies in sign across specifications. We conclude that, from an ex ante perspective,
RTS heterogeneity better predicts differences in firm growth and survival over the life
cycle than TFP heterogeneity.

Finally, we investigate whether firms with varying RTS respond differently to
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aggregate shocks. We use two types of shocks: changes in industry-level TFP, and
the 2007-2008 global financial crisis. We estimate regressions of firm revenue growth
on RTS, the aggregate shock, and their interaction (Table A.7). The results show
that firms with higher RTS respond more strongly to aggregate shocks, consistent
with greater scalability (see also Smirnyagin (2023) and Argente et al. (2024)).

4.5.2 Role of RTS Heterogeneity in Wealth and Wage Inequality

We conclude this section by examining how firm-level RT'S relates to the wealth of firm
owners and the wages of workers. First, we analyze how production function param-
eters vary with the equity wealth of business owners. A key advantage of our dataset
is that we can link firms to their ultimate individual owners using administrative
records from the Shareholder Information in Corporate Tax Files. We calculate each
individual’s equity wealth by aggregating the value of the firms they own, weighted
by ownership shares. For each owner, we then compute an equity-value-weighted
average RTS and TFP percentile across the firms they own. Figure 7a shows that
wealthier individuals tend to own firms with higher RTS. That is, owners at the top
of the wealth distribution are more likely to own firms with more scalable produc-
tion technologies. In addition, conditional on RTS, TFP is also increasing in owner
wealth, but in a concave manner, particularly at the top of the distribution.

It is well established that large firms tend to pay higher wages than smaller firms
for similar workers (Brown and Medoff (1989)). Given our results, a natural question
is whether this firm size-wage premium is driven by higher TFP or greater scalability
(RTS) among large firms. To disentangle these factors, we rank firms by their average
wage and compute the average RTS and TFP across wage deciles. Figure 7b shows
that higher-paying firms tend to have significantly higher RTS, while the relationship
between wages and TFP is weaker and less systematic. These findings suggest that

RTS heterogeneity is an important driver of the firm size-wage premium.

5 Misallocation with RTS Heterogeneity

So far, we have documented substantial heterogeneity in RTS across firms and ex-

amined its implications for a broad set of empirical patterns related to the firm size
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FIGURE 7 — RTS AND TFP BY OWNER'S WEALTH AND AVERAGE FIRM WAGE
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Notes: Figure 7a shows the average percentiles of RT'S and TFP by percentiles of owners’ equity wealth. Figure 7b
shows the average percentiles of RT'S and TFP by deciles of firms’ average wage. Average wage is demeaned at the
industry level. RTS and TFP percentiles are calculated within industry using our baseline (GNR) method.

distribution. In this section, we argue this heterogeneity is also important theoreti-
cally and quantitatively by focusing on a fundamental question in macroeconomics:
the efficiency costs of financial frictions. We employ an off-the-shelf quantitative
model of entrepreneurship (i.e., Quadrini (2000); Cagetti and De Nardi (2006)) to
compare the misallocation arising from financial frictions in a calibration with het-
erogeneity in both RTS (n) and TFP (z)—the (n, z)-economy—against a standard
setting with heterogeneity only in z—the z-economy. Our main conclusions remain
robust in richer settings—those we consider in the empirical analysis—with intermedi-
ate inputs and pre-determined capital. Our analysis suggests that RTS heterogeneity
has broad implications for various quantitative questions, such as optimal taxation of
capital (Boar and Midrigan, 2022), firm recruiting intensity (Gavazza et al., 2018), or
firm cyclicality (Clymo and Rozsypal, 2023; Smirnyagin, 2023). To build intuition,
we first derive an analytical result in a static endowment economy and then quantify

the mechanism in a dynamic setting.

5.1 Analytical Result in an Endowment Economy

We consider an endowment economy with aggregate factor supply normalized to one,
X = 1. There is a continuum of firms i € [0, 1], producing perfectly substitutable
goods. A fraction x € (0,1) of these firms face an input price wedge 7 > 0 and are
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FIGURE 8 — EFFICIENCY COSTS IN ENDOWMENT ECONOMY
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Notes: The figure provides a qualitative illustration of efficiency losses from input wedges for a representative con-
strained firm. In the Z-economy, the firm has high TFP (z = z,n7 = no); in the f-economy, the firm has high returns
to scale (2 = 209,m = 7)), with 0 < 20 < Z and 0 < g < 77 < 1. The shaded areas capture the implied output loss
under each scenario.

thus constrained in their production. Each constrained firm is characterized by a pair
of parameters (7, z), where n € (0,1) indicates decreasing returns to scale and z is
the firm’s TFP. The output of a constrained firm is given by y = f(z;2,17) = z - 2.
The remaining fraction of firms 1 — y is unconstrained and has constant returns to
scale (n = 1).! The following proposition characterizes misallocation in terms of the

output share of constrained firms and the RTS of constrained firms:

ProrosITION 1. Consider an interior equilibrium where the output share of con-
strained firms is below one. Then, up to a second order approrimation around the

first best (T =0), the percent output loss associated with T is given by

2 X X
T . Wy i .
AlnY (1) = — : w; - di : - - di
2 Xow:di 1—mn;
~~— g0 , 0 f 0 Wid) T
. P \ - J/
size of friction  oyiput share of constrained firms avg. ~BIS_ constrained firms
© T-RTS

where w; = ;ﬁi denotes the relative output of firm i in the first-best equilibrium.
Proof. See Appendix E.1 for the proof of the proposition. O

The proposition states that misallocation is proportional to the size of the friction

and the output share of constrained firms and, more importantly, is increasing and

19 Alternatively, one could assume that unconstrained firms also exhibit decreasing RTS, but the
presence of free entry ensures constant RTS at the sectoral level.
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convex in the (weighted-average) RTS of constrained firms (see also Atkeson et al.
(1996) and Guner et al. (2008) for related points). Consequently, for a given friction,
misallocation becomes more severe when constrained firms have higher RTS. Further-
more, as a result of the convexity of misallocation in RTS, greater dispersion in RTS
among constrained firms also leads to more severe misallocation.

Intuitively, a given input price wedge results in a larger quantity adjustment when
RTS is high, as marginal products decline more slowly. This causes constrained
firms to reduce their inputs more, leading to greater misallocation. In contrast, firm
TFP affects misallocation only indirectly through its influence on the output share
of constrained firms. We illustrate this in Figure 8, which depicts the marginal input
product of firms that would be “large” in the first-best equilibrium and contribute
most to misallocation. The solid blue line represents the conventional setting where
large firms have high TFP (Z), while the dashed red line represents an economy where
large firms have high RTS (7). For a given wedge 7, misallocation—represented by

the area under the curve—is larger in the 7-economy.

5.2 Quantitative Dynamic Model

We now consider a dynamic workhorse model of entrepreneurship in the tradition of
Quadrini (2000) and Cagetti and De Nardi (2006), in which the set of constrained
firms emerges endogenously. We use this model to quantify misallocation in an econ-
omy where firms differ in both RTS and TFP, as in our empirical findings, and
compare it with the misallocation in an economy where firms differ only in TFP.
Apart from the introduction of RTS differences, our framework remains deliberately
simple and closely follows these standard models of entrepreneurship in quantitative
macroeconomics. At the end of this section, we show that our main finding remains
robust in richer settings, including those employed in our empirical framework (e.g.,
if we explicitly introduce intermediate inputs): accounting for RTS heterogeneity

substantially amplifies the misallocation losses from financial frictions.

5.2.1 Model Setup

Time is discrete and there is a continuum of agents of mass one, who derive log

utility from consumption. They discount the future at rate 3 and face a constant
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death probability p € [0,1). Thus, their effective discount factor is § = (1 — p) - B,
and they maximize E [tho ok ln(ct)}. Agents face an occupational choice between
employment as a worker and entrepreneurship, o € {WW, E'}. A worker’s labor income
equals w - h, where w denotes the wage rate and h the efficiency units of labor supply,
which follow a first-order Markov process. Entrepreneurs are price takers in input
and output markets, using labor ¢ and capital k at rental rates w and R, respectively,
to produce output z- f(k, £)", where f(-) is a constant RT'S production function. The
pair (z,n) denotes entrepreneurial productivity z and scalability of their project 7,
which follow a joint first-order Markov process.

Asset markets are incomplete, and agents can invest their wealth ¢ > 0 in an
annuity that pays an interest rate r. Upon death, individuals are replaced by an equal
number of newborn households who start with zero wealth. We parameterize financial
frictions by A € [0, 1] and assume that a fraction A of total input expenditures must
be financed by the entrepreneur’s own wealth. As a result, static profit maximization

yields a net profit of
T = . n , ,
(a,z,n) k%%{oz f(k,O)" —w-{—R-k

s.t. w-é—i—R-kS%,

implying input choices k(a, z,n), £(a, z,n) and output y(a, z,7).2° Thus, the agent’s

dynamic problem can be written in recursive form as

Via,h,z,n) = max  u(c)+3-E[V(d, P, 2, 0)]

a’>0,c>0,0e{W,E}

st. c+d =Ty -w-h+1T—g-7(a,z,n)+ (1+7)-a.

We assume that there is a competitive financial intermediary, investing in physical

capital with depreciation rate 9, and issuing the annuities.

Equilibrium. We relegate the standard definition of equilibrium to Appendix E.2.

20We assume that the friction affects all inputs symmetrically to focus on overall firm size dis-
tortions, without introducing additional distortions on relative input use (as would be the case, for
example, with a collateral constraint on k only). In the extension with intermediate inputs in Section
5.2.4, we also consider asymmetric constraints.
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5.2.2 Calibration

The main idea is to calibrate both the (7, z)- and the z-economy to the same set of
observable moments of the firm size distribution and entrepreneurship dynamics. We

employ the standard calibration strategy in this literature. First, we briefly discuss

1
80°

expected life expectancy of 80 years.?’ We use a Cobb-Douglas production function

fixed common parameters. We set the death probability to corresponding to an
(f) with capital share a = 0.4 and depreciation rate 6 = 0.05. Labor efficiency units h
follow a log-normal AR(1) process with an autocorrelation of 0.9 and a cross-sectional
standard deviation of 1.3, with the mean normalized to p;, = —é. This process is
estimated directly from the data on individual post-tax earnings. We calibrate both
economies at A = 0.3, indicating that 30% of input expenditures must be financed

with the owner’s wealth, and then vary ) in counterfactuals.??

(z)-Economy: We jointly calibrate a set of five parameters (3,1, 0., p., £,) to match
a set of six empirical moments as summarized in the middle column of Table TV. We
provide intuition on how these parameters are identified. The effective discount factor
[ primarily influences the aggregate capital-output ratio. The (common) RTS param-
eter 7 is closely tied to the fraction of the population engaged in entrepreneurship, as
it determines the share of income entrepreneurs receive. We model the z-process as
log-normal AR(1) with normalized mean u, = —‘7—23. Its autocorrelation (p,) affects
the transition rates into (and out of) entrepreneurship. The cross-sectional disper-
sion of z, captured by o,, plays a crucial role in shaping the firm size distribution.
Additionally, we model the top 1% of the z-distribution with a Pareto tail, where &£,
denotes the tail coefficient, enabling the model to better match the right tail of the

firm size distribution. Overall, the model achieves an excellent fit with the targeted

empirical moments.

(n, z)-Economy: In essence, we replicate the calibration of the z-economy, but also

account for heterogeneity in 1 by matching the observed dispersion of RTS along the

21The death rate affects in particular wealth accumulation at the bottom of the wealth distri-
bution, as newborns enter with zero wealth. The bottom 50% wealth share equals 3.3% in the
(1, z)-model and 2.2% in the z-model, in the ballpark of the value for Canada of 4.9%.

22Defining the debt d of entrepreneurs as d = max {0, k — a}, the aggregate debt-to-capital ratio
is 81% in the (n, z)-model and 71% in the z-model, both in line with Canada’s ratio of roughly 70%.
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TABLE IV — DYNAMIC MODEL: TARGETED MOMENTS AND CALIBRATED PARAMETERS

Data Model
z-economy  (n, z)-economy

A. Targeted moments

Fraction entrepreneurs 0.117 0.117 0.117
Transition rate W—E 0.021 0.021 0.021
Top 10% revenue share 0.799 0.804 0.796
Top 1% revenue share 0.522 0.515 0.524
Top 0.1% revenue share 0.282 0.284 0.283
RTS: Top 5% vs bottom 50% (by revenue) 0.083 0* 0.083
Capital-output ratio 2.970 2.970 2.971
B. Internally calibrated parameters

Mean RTS Ly 0.683 0.782
Standard deviation RTS o — 0.054
Standard deviation TFP o 0.910 0.614
Persistence TFP o 0.970 0.954
Pareto tail TFP &, 2.880 —
Correlation (z,7) T2 — -0.262
Discount factor I3 0.902 0.890

Notes: Steady-state calibration of the (7, z)- and z-economy (both at A = 0.3). * not targeted. Data moments are
derived from Canadian data, and the RTS gap corresponds to our baseline estimation.

revenue distribution (rightmost column of Table IV). Specifically, we model 7 as a
truncated normal AR(1) process in the interval (0,1) with parameters (u,, oy, py)-
We ex ante fix the autocorrelation to a high value of p, = 0.98, which equals the
persistence of RTS in our empirical analysis. The mean p, determines the fraction
of entrepreneurs, while the cross-sectional standard deviation o, is closely linked to
the difference in average RTS between the top 5% and the bottom 50% of firms,
ordered by revenue. We also allow z and 7 to be correlated by setting log TEFP

Inz = 2+ o0y, - (n — py), where z follows a normal AR(1) process with pa-

rameters (0., p,, p, = —%) Intuitively, both o, , and o, influence moments of the
firm size distribution: If the empirical dispersion in RTS is small, a high residual
TFP dispersion o, is needed to match the observed concentration of revenue among
firms. Conversely, if the observed dispersion in RTS is large, the calibration would
infer a more negative correlation parameter o, .. Rather than directly using the es-
timated joint distribution of 17 and z in the model, we calibrate the TFP parameters

residually in this manner. This approach is necessary because when firms operate
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under different production functions with varying 7, the inferred relative TFPs are
not comparable across firms.?* This is the case in our model as well as in some of our
empirical approaches (for instance, when we cluster firms such that firms within an
industry do not share a common production function). In summary, we calibrate six
parameters to match seven empirical moments. This model version also fits with the
data perfectly. Notably, it does not require a Pareto tail in z to replicate the right
tail of the firm-size distribution; the observed heterogeneity in RTS, combined with

a log-normal z, is sufficient.

5.2.3 Quantitative Findings

The two model economies are observationally equivalent in terms of the fraction of
entrepreneurs, the persistence of entrepreneurship, the firm-size distribution, and the
ratio of wealth (capital) to output. We now evaluate the efficiency losses associated
with the same financial friction in both economies. Figure 9 compares the output
losses induced by increasing the financial friction parameter A from the unconstrained
case of A = 0 up to A = 1, across stationary equilibria of the two models. For
example, if entrepreneurs need to use 30 cents of their own wealth to finance each
dollar of input expenditure (A = 0.3), the (7, z)-economy—with heterogeneity in both
TFP and RTS, disciplined by our empirical estimates—features an output loss of 18.3
log points relative to the frictionless case. In contrast, the conventional z-economy,
which imposes homogeneous RTS, incurs a significantly smaller output loss of 7.4 log

points. Thus, incorporating realistic heterogeneity in RT'S, while otherwise matching

23To see this, consider a simple example of two firms, j = 1,2, that differ in their RTS (1, > 12)
and TFP. Assume their production function is given by y; = z; -é;“, where RTS (a unit-free
elasticity), as well as input and output levels, are known. Then, the ratio of their measured TFP is

given by
a_y (b 1
29 Yo ls ggﬁnz ’

unit dependence

which depends on the level of the input ¢ and, therefore, on the unit of measurement. In particular,
the relative TFP of the higher-RTS firm is inversely proportional to the unit of measurement.
Therefore, depending on the choice of unit (e.g., hours vs. full-time equivalents), one can find any
relationship (in both sign and magnitude) between the TFPs of these two firms using the same data.
As a result, when firms operate different production functions with varying RTS, relative TFP lacks
the usual cardinal interpretation. For a similar discussion on unit dependence in the context of
house price elasticities, see Greaney (2019).
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FIGURE 9 — OUTPUT LOSSES FROM FINANCIAL FRICTION IN DYNAMIC MODEL
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Notes: The figure plots output as a function of the financial friction A, for both the (z)- and the (7, z)-economy.
Output in both cases is normalized to one at A = 0.

the same observables, amplifies the output losses due to financial frictions by 147%.

To understand this finding, we decompose the total log output loss into three
terms: (i) static misallocation of production factors, holding fixed occupational choice,
(i) misallocation of talent across occupations, and (iii) under-accumulation of capi-
tal. Panel A of Table V shows that static misallocation of production factors across
firms contributes 10.6 log points in the (7, z)-economy—more than half of the total
GDP loss and twice as much as in the conventional z-economy. This is the channel
highlighted in our analytical discussion in Section 5.1, and our quantitative findings
are in line with Proposition 1: a given wedge distorts input choices more for high-
7 businesses. The dynamic setting magnifies this effect: Consider two hypothetical
superstar entrepreneurs that are currently poor. The one distinguished by high pro-
ductivity (high z) finds it easier to operate profitably at small scale, outgrowing the
friction rather quickly. In contrast, the one distinguished by high scalability (high 7)
is less profitable at small scale, and struggles to outgrow the friction.

The majority of the remaining output loss is due to the under-accumulation of
capital. Misallocation of talent across occupations also contributes slightly more to
the output loss in the (7, z)-economy but remains relatively small in both economies.
The A-friction primarily misallocates production factors across firms rather than dis-
torting the decision to become an entrepreneur. We chose a simple and transparent

calibration strategy with a small number of parameters, deliberately avoiding addi-

35



TABLE V — DECOMPOSITION OF OUTPUT LOSSES AND OTHER COMPARISONS

A. Decomposition of output losses z-economy (n, z)-economy
Total log GDP loss 7.4 18.3
. due to misallocation of production factors 5.0 10.6
. due to misallocation of talent 0.5 0.6
. due to K accumulation 1.9 7.1
B. Alternative comparisons, total log GDP loss
1. Equating aggregate debt/capital ratio 7.4 26.9
2. Equating dispersion in log marginal products 7.4 21.6

Notes: Panel A additively decomposes the total (steady-state) log GDP loss going from A = 0 to A = 0.3 into (i)
misallocation of production factors (starting from the A = 0.3 steady state, fixing K, L, and occupational status,
allowing for efficient reallocation of K, L across firms); (ii) misallocation of talent (in addition allowing for efficient
change of occupational status), and (iii) dynamic under accumulation of capital. Panel B reports the total GDP loss
from the financial friction A, in log points, in alternative scenarios. We raise A from 0 to 0.3 in the z-economy, and
from O to x in the (7, z)-economy, where z is chosen to match the debt ratio (row 1), respectively marginal input
product dispersion (row 2), of the z-economy with A = 0.3.

tional elements such as fixed costs of entry and exit that could magnify the importance
of the occupational choice channel.

In the benchmark scenario, we increase A from 0 to 0.3 in both economies. Panel B
Table V shows that our results are even stronger when we instead equate observable
moments, such as the aggregate debt-to-capital ratio or the dispersion in log marginal
input products. For these exercises, we continue to raise A from 0 to 0.3 in the z-
economy, which generates an aggregate debt-to-capital ratio of 0.708 and a cross-
sectional standard deviation of log marginal products of 0.144. We then adjust A in
the (7, z)-economy—raising it from 0 to 0.797 to replicate the debt ratio, or to 0.454
to match the marginal product dispersion. In these scenarios, the (7, z)-economy
generates output losses that are 192 — 264% larger than those in the z-economy.

Our findings are related to results in the macro-development literature (Buera
et al. (2011); Midrigan and Xu (2014); Moll (2014)). A key quantitative finding in
these studies is that misallocation losses due to financial frictions are relatively small
when firms differ only in TFP but otherwise share the same, homothetic production
technology. Output and efficiency costs are larger when taking into account tech-
nology choice. In particular, a choice between a high fixed cost, low marginal cost
technology versus a low fixed cost, high marginal cost technology locally generates
an increase in RTS across the firm size distribution. Our framework does not feature
technology choice, and as such the entry margin contributes little to the output losses

from financial frictions (as shown by the small contribution of the misallocation of
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entrepreneurial talent in Table V). However, static misallocation is greatly amplified

when allowing for differences in RTS among existing firms.

5.2.4 Intermediate Inputs and Pre-determined Capital

Our baseline model deliberately adopts a streamlined entrepreneurial framework that
omits several empirically relevant features of production, in order to isolate the quan-
titative importance of heterogeneity in RTS. Here, we show that while incorporating
these richer features affects the overall level of misallocation—as documented in re-
lated literature—it does not overturn our main result: heterogeneity in RTS amplifies
misallocation far beyond what is implied by TFP heterogeneity alone.

We first modify the production function in line with our empirical findings: z -
ko oL . mn—exk =L where o and o, are fixed across firms, and n governs RTS. In
this formulation, differences in RTS arise entirely from heterogeneity in intermediate
input elasticities. Consistent with the data, larger firms have higher RTS due to
greater use of intermediate inputs.

We consider three alternative model setups that differ in the formulation of the
financial constraint, and in the timing of input choices. Our calibration strategy
closely follows the baseline model. A detailed description of these extensions, along

with their calibration and results, is provided in Appendix E.3.

Symmetric constraint on all inputs. First, we maintain that the financial con-
straint is symmetric across inputs: w-¢+ R-k+m < §. Misallocation losses increase
relative to the baseline—both with and without RTS heterogeneity—reflecting that
the inclusion of intermediate inputs magnifies distortions (see, e.g., Baqaee and Farhi
(2019)). Importantly, RTS heterogeneity continues to generate much larger misal-
location losses from financial frictions: 46.3 vs. 9.3 log points, an amplification of
398%, compared to +112% in the baseline (row 2 of Table A.14 in Appendix E.3).

Flexible intermediates and a constraint on capital and labor only. Next, in
line with our empirical approach, we treat intermediate inputs as fully flexible, and
impose the financial constraint only on capital and labor: w - ¢+ R -k < . Firms

with higher n face relatively smaller effective financial frictions since the constraint

37



applies to a smaller fraction of their inputs, weighted by factor elasticities (O‘LJ“%)
Compared to the baseline, two offsetting effects emerge: intermediates still amplify
distortions, but the financial constraint becomes less restrictive. More importantly,
RTS heterogeneity continues to magnify misallocation, with losses more than tripling

(+214%) relative to the homogeneous RTS case (row 3 of Table A.14).

Pre-determined capital. Finally, we modify the timing of input choices by as-
suming that capital is chosen one period in advance—i.e., period t capital is prede-
termined in period ¢ — 1, prior to observing current shocks. With this added assump-
tion, the model satisfies the empirical assumptions underlying the GNR estimation
approach.?* The overall level of misallocation caused by the financial friction \ is
lower. This reflects findings in the literature that when input choices are risky, the
financial constraint on inputs () is secondary to the risk wedge as a source of mis-
allocation (David et al. (2022); Boar et al. (2022)). Even so, the economy with RTS
heterogeneity continues to exhibit misallocation losses from A that are 81% higher as
the one without RTS heterogeneity (row 4 of Table A.14).

Summary. Introducing intermediate inputs and varying the timing of input choices
affects the overall level of misallocation in ways consistent with standard models.
Nonetheless, across all these extensions, the key insight remains unchanged: hetero-
geneity in RT'S significantly amplifies the misallocation induced by financial frictions—

well beyond what is captured by TFP differences alone.

6 Conclusion

In this paper, we have documented significant heterogeneity in firms’ scalability

(RTS), even within narrowly defined industries. RTS heterogeneity is substantial,

24We have verified that, when using model-simulated data and estimating production functions
using the GNR approach with sufficiently many clusters, we recover the true parameter values.
Intermediate inputs are fully flexible, allowing the first stage of GNR to consistently estimate their
elasticity. Capital is pre-determined, while labor is endogenous to current TFP. However, due to the
persistence of wealth a and the structure of the financial constraint, labor inputs are autocorrelated—
making lagged labor a valid instrument in the second stage. Clustering is necessary because firms
with different 1 operate distinct production technologies.

38



highly persistent, and systematically related to firm size: larger firms tend to ex-
hibit higher RTS. A significant portion of this heterogeneity is driven by persistent
differences across firms, rather than by temporary factors or nonhomotheticities.

Accounting for RTS heterogeneity not only attenuates the positive correlation
between TFP and firm size but also causes this relationship to break down for the
largest firms. The largest firms are distinguished more by their high scalability than by
their productivity levels. The positive relation between firm size and RT'S is primarily
driven by differences in the output elasticity of intermediate inputs, while labor and
capital elasticities are jointly decreasing with firm size. We have also revisited some
of the well-known empirical patterns around firm heterogeneity that were previously
explained by differences in TFP. We find that high-RTS firms grow faster, are owned
by wealthier households, and pay higher average wages.

The documented RT'S heterogeneity has important implications for understanding
the interaction between firm growth, the firm-size distribution, and the distributional
impact of financial constraints and taxes, to note a few examples. To illustrate this,
we employed an off-the-shelf quantitative model that incorporates firm heterogeneity
not only in TFP—as in standard models of entrepreneurship and firm dynamics—
but also in RT'S. When large firms are characterized by high RTS—as we documented
empirically—rather than by high TFP (the conventional view), the efficiency costs
of financial frictions are significantly magnified. We provide intuition for this result
in a static setting and then quantify the mechanism within a dynamic model. Our
results show that the same financial friction generates over twice the efficiency and
output costs in an economy with both RTS and TFP heterogeneity, compared to
a conventional calibration that attributes all observed firm heterogeneity to TFP
dispersion. These findings indicate that incorporating realistic RT'S heterogeneity has
important implications for related questions, including the optimal design of wealth

and capital income taxation.
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Appendix for “Scalable versus Productive

Technologies”

Joachim Hubmer (r) Mons Chan () Serdar Ozkan

() Sergio Salgado () Guangbin Hong

A Details of Our GNR Method Implementation

We introduce our benchmark technique in detail, which closely follows Gandhi et al.
(2020). We assume that output Yj; of firm j in year ¢ is produced using the firm’s

capital stock K, labor input L;;, and intermediate inputs Mj;, in the following way:

Assumption 1. The firm’s production function takes the following general form in
levels Yy, = F(Kji, Ljt, Mj)e"t and in logs yj = f(kj, i, mje) + vy where fis
a continuous and differentiable function which is strictly concave in mj, and vj is

Hicks-neutral productivity.

The traditional challenge in the production function estimation literature is sep-
arating productivity shocks that influence a firm’s output from its input choices. To
address this challenge, we leverage the firm’s first-order conditions (FOC) and make
timing assumptions regarding the nature of productivity and input choices to form
moment conditions. We illustrate the details below.

Define Zj; as the information set available to firm j when it enters period ¢. The set
Z;; includes all relevant information (e.g., firm productivity, current capital stock, and
so on) that the firm uses to make its period-t¢ decisions. We define any input X, € 7,
as predetermined. Predetermined inputs are thus functions of the previous period’s
information set, X;(Z;,_;). We treat capital as a predetermined input. Inputs that
are not predetermined (i.e., those chosen in period t) are defined as wvariable. If the

optimal choice of a variable input X; depends on its own lagged values X; 1, we refer



to it as dynamic input. We depart from GNR by allowing labor to be a dynamic input.
Finally, we define an input that is variable but not dynamic as flexible. Intermediate
inputs are treated as flexible in our framework. As a result, both K;; and L;, ; are

elements of Zj;, but L;; and Mj; are not.

Assumption 2. Capital (K;; € Z;;) is predetermined and a state variable. Labor
input (Ljy ¢ Tji) is dynamic, such that Ly € Tj is a state variable. Intermediate
inputs (Mj: ¢ ;i) are flexible, so that M1 & ZL;:.

The Hicks-neutral productivity term v;; is composed of two components: (1) a
persistent component, wj;, which is known to the firm when it makes input decisions,
and (2) a transitory component, €;;, which is unknown to the firm when making
input decisions in period ¢t. Changes in these productivity terms may arise from both
technology shocks and market demand shifts, while the transitory component may

also reflect measurement error in output.

Assumption 3. The persistent productivity component, w;; € Ly, is observed by
the firm prior to making period-t decisions and is first-order Markov, such that
Elwjt|Zjt—1] = Elwjt|wji—1] = h(wji—1) for some continuous function h(.). The transi-
tory productivity innovation, €;; & Lj, is i.i.d. across firms and time with Ele;] =0

and is not observed by the firm prior to period-t decisions, with P.(¢;:|Zj1) = P:(gjt).

Assumption 4. We assume that demand for intermediate input mj, = M (kj;, {1, wjt)

is strictly monotone in wjq.

Note that this intermediate input demand function (conditional on period-t labor
and capital inputs) is critical in identifying the production function while allowing
labor to be a dynamic (and not predetermined) input. We also make the following

assumption about the firm’s profit-maximizing behavior and environment:

Assumption 5. Firms maximize short-run expected profits and are price takers in
both output and intermediate input markets. Denote the common output price index

for period t as P, and the common intermediate price index as p;.

Assumptions 1 to 5 give us the FOC for the firm’s profit maximization problem
in period ¢ with respect to M;,, H%F(Kjt,Lﬁ, M;)en€ = p;, where € = E[e®"]
J



is a constant. Our first estimating equation is provided by multiplying both sides by
M;,/Y;:, plugging in the production function, and rearranging the above FOC:

Sjt = hlg + In D(k‘jt,ﬁjt,mﬁ) — Ejt = ln(Dg(kjt,fjt,mjt)) — €jt7 (1)

where s;; = In(p;M;;/P,Y};) is the log revenue share of intermediate input expendi-
ture and D(kjy, £j, mjy) = %ﬂ (kji, £j¢, mj) is the output elasticity of intermediate
inputs. Since we assume E[g;;] = 0, we can use equation 1 to identify €;; and D,
Given that €;; = In (Dg(kjt, Ui, mjt)) — 5j¢, we can identify the constant £, which
subsequently provides the elasticity D(kj, €j¢, m;) = D®(kji, Uje, mji)/E. Once we
know D(kj;,£j,mj;) and €;,, we can integrate the elasticity up to estimate the rest

of the production function nonparametrically.! In particular, we have
_ 0
D(kjt, Ljt, mjt) = %f(kjtagjt7mjt)dmjt = f(Kjt, Cje, me) — ke, Uie), (2)
J

where W(kj;, £;;) is the constant of integration (the component of the production
function unrelated to m;;). We can then define the residual output as §;; = vyt — €t —
D(kj, Ly, mj) = ¥(kji, {ji) + wji. Plugging in the structure of w;; from Assumption

3 and defining §;; = wjr — Elw;¢|w;i—1] , we get our second estimating equation,
Uit =V (kji, L) + h (i1 — Y (kjee1, Cji—1)) + &G (3)

where 7;; is observable given the first-stage estimates of ¢;; and D(kjs, £j¢, mj;). Our
assumptions on the firm’s information set give us E[&;:|kjt, Cj1—1, kji—1, Yji—1, Ljt—2] =0
(i.e., E[&t|Zjt—1] = 0), which we use with equation 3 to identify U, h, and thus &;;.
The estimation procedure uses a standard sieve-series estimator to nonparamet-
rically identify the output elasticities and production function. We proceed in two
steps. First, we estimate equation 1 with a complete second-degree polynomial in kjq,

i, and m;; using nonlinear least squares. This estimator solves

2
m1nz €?t = Z lsjt - ln ( Z Vrk,rg,rm k;f£;€m§;n>] ) (4)
Y gt

gyt T +retrm <2

!We need one more technical assumption (Assumption 5 in GNR) on the support of (kjz, £;t).

3



. . . A~ - o A Tk OT¢ T
which gives us estimates of £;; and D (kje, Ce, mje) = D2 40y <0G Kt Lm0 ).

We can then recover £ = E[efit] and the input elasticity

D(kjt? Cjt, mjt) = Z (%,remmkﬁ@f@mgi") )

Te+re+rm <2

where 4 =4/ £. We then integrate the estimated flexible input elasticity to recover

_ Jjt  » Tk PTe, T
D(kji, Lje, mjt) = E < %k,rg,rmk’jt gjtmj;tn> )

T 1
Te+re+rm <2 mt

which allows us to recover y:jt = Yjt — Ejt — ﬁ(kjt, lj1,mj;), that is, the component of
output unrelated to variation in intermediate inputs.

In the second step, we estimate equation 3 using GMM, by approximating W (k;, £;;)
and h(w;;—1) using complete (separate) second- and third-degree polynomials, respec-
tively. Since we can identify both W(k;;, ¢;;) and TFP only up to an additive con-
stant, ¥ is normalized to have mean zero, which implies that any fixed component
of W(kjt, ¢;) will show up in the firm productivity level. This gives us the following

second-stage estimating equation:

Yjt = — Z aTk,Tek;'—ng + Z Oa (ﬂjt—l + Z aTk,Tek;ffl Zl) +€jt7 (5)

0< T +10<2 0<a<2 0<7p+7p<2

where a is the degree of the polynomial. Since E[j|kjt, {j¢—1,Z;1—1] = 0, the only en-

dogenous variable is £;;. Thus, we can use functions of the set {k;s, kji—1, Cje—1, Mjt—1, Yjt—1}

as instruments. In particular, our moments are F[{;;5,_,] and E[&;:ki; (7 ] for all

0<a<2and 0 < 7, +7 < 2, leaving us exactly identified.? This provides us
with estimates of the production function as well as w;q, éjt, and cf)jt = iL((;)jt_l). We
then obtain the firm-level measure of RTS as sum of the output elasticities of capi-
tal and labor, combined with the previously estimated intermediate input elasticity:

it = N(kje, e, mge) = € (kje, Cie, me) + € (e, e, mie) + ep(Kje, e, mye).

2As pointed out by GNR, this implies that the estimator is a sieve-M estimator, which allows
us to treat the polynomials as if they were the true parametric structure.

3While the notation in this section assumes a common production function for all firms, in
practice we allow the production function to vary across different groupings, such as two-digit NAICS
industries and clusters of firms with similar combinations of inputs and output.

4



A.1 Controlling for Market Power

We partially extend the GNR approach to control for variation in firm-level markups
by estimating a modified first-step revenue share equation as follows. Relaxing the
perfect competition assumption 5, we allow firms to face a downward-sloping demand

op;,
Y,

curve, so that < 0. The FOC for intermediate inputs (Equation 1) then becomes

st = InE+1n D(kj, Ly, mj) —In pP — e, where p? = Ega is the firm’s price markup
over marginal costs. Following De Loecker et al. (2020) and De Loecker et al. (2016),
we use functions of firms’ output market shares to proxy for unobserved price elas-
ticities (¢}). In particular, we use a cubic function of market shares (defined at the
two-digit NAICS level). Since period-t market shares may be correlated with tran-
sitory productivity shocks, we then estimate the modified first-stage equation with
GMM using lagged market shares as instruments for current shares. This allows us
to recover the output elasticity of intermediate inputs while controlling for market
power, though the remaining output elasticities cannot be identified without price

data or stronger parametric assumptions.



B Additional Figures and Tables

TABLE A.1 — AVERAGE PRODUCTION FUNCTION ESTIMATES BY INDUSTRY

Industry NAICS N RTS M-elas L-elas K-elas
Agriculture 11 37,600  1.00 0.53 0.41 0.05
Mining 21 16,500  1.00 0.46 0.44 0.10
Energy 22 2,500 1.00 0.59 0.34 0.07
Construction 23 738,300 1.00 0.55 0.41 0.04
31 69,100 1.01 0.61 0.37 0.03
Manufacturing 32 119,700 1.01 0.59 0.38 0.03
33 247,100 1.00 0.55 0.42 0.03
Wholesale Trade 41 366,400  0.99 0.71 0.26 0.02

44 614,400 1.00 0.75 0.22 0.02
45 185,400 1.00 0.71 0.27 0.02
48 109,300 0.99 0.58 0.36 0.05
49 13,300 1.01 0.63 0.33 0.04

Retail Trade

Transportation and warehousing

Information and cultural 51 39,200  1.00 0.56 0.41 0.04
Finance and insurance 52 33,600 0.65 0.57 -0.05 0.13
Real estate 53 69,100 1.01 0.54 0.40 0.07
Professional Services 54 260,000 0.98 0.48 0.47 0.03
Management of companies and enterprises 55 27,700  1.03 0.59 0.39 0.05
Administrative and support 56 186,800 1.00 0.53 0.42 0.04
Education 61 26,700  0.98 0.51 0.45 0.03
Healthcare 62 111,300 0.59 0.40 0.05 0.14
Arts, entertainment and recreation 71 66,000 0.98 0.51 0.44 0.03
Accommodation and food services 72 552,500  0.99 0.59 0.37 0.04
Other Services 81 427,600 0.77 0.54 0.16 0.06

Notes: The numbers of observations are rounded to the nearest hundreds.

TABLE A.2 — WITHIN-INDUSTRY VARIANCE OF ELASTICITY ESTIMATES

RTS  K-elasticity L-elasticity I-elasticity

Fraction of variation (variance) within industry

Two-digit NAICS  23.3% 61.9% 65.9% 72.7%
Four-digit NAICS 22.0% 57.8% 58.6% 63.6%
Standard deviation within industry

Two-digit NAICS  0.052 0.031 0.152 0.149
Four-digit NAICS  0.051 0.030 0.143 0.139

Notes: Table A.2 shows the within-industry variations for the three output elasticities and RTS estimates. It includes
both the within-industry fraction of total variance and the within-industry standard deviation.



TABLE A.3 — CORRELATION OF OQUTPUT ELASTICITY ESTIMATES

Between-Industry Variation Within-Industry Variation

Labor Capital Labor Capital
Intermediates -0.3 -0.7 -0.9 -0.4
Labor 1.0 -0.4 1.0 0.0

Notes: Table A.3 shows the correlation coefficients of the output elasticity estimates of the three inputs. The between-
industry results show the weighted correlation of the average output elasticities of each two-digit NAICS industry,
and the within-industry results demean the output elasticities at the two-digit NAICS level.

TABLE A.4 — SUMMARY STATISTICS FOR MANUFACTURING FIRMS

Mean Median St.dev P50-P10 P90-P50 P99-P50

Revenue 14.15  13.95 1.58 1.67 2.31 4.67
Intermediates 13.56  13.35 1.68 1.76 2.46 4.93
Labor 1291 12.77 1.49 1.67 2.12 4.10
Capital 12.03 11.98 1.99 2.39 1.87 5.27

Notes: This table shows the moments of the distribution of revenues, intermediate inputs, labor, and capital stock in
log real Canadian dollars for the Canadian manufacturing sector. The total number of observations is 436,000.

TABLE A.5 — DISTRIBUTION OF PRODUCTION FUNCTION PARAMETERS FOR MAN-
UFACTURING FIRMS

Mean Median St.dev P50-P10 P90-P50 P99-P50

Returns to scale 1.00 1.00 0.02 0.02 0.02 0.07
Output Elasticities

Intermediates 0.57 0.56 0.14 0.16 0.18 0.37

Labor 0.40 0.41 0.13 0.17 0.15 0.28

Capital 0.03 0.03 0.03 0.03 0.04 0.09

Notes: This table shows the moments of the distribution of estimates for RT'S and output elasticities for the Canadian
manufacturing sector. The total number of observations is 436,000.



TABLE A.6 — PROBIT REGRESSIONS OF FIrRM EXITS

(1) (2)

RTS —0.056%** —0.539%**
(0.002) (0.013)
TFEFP Percentile -0.020%** 0.142%**
(0.001) (0.002)
N 4.1M 3.4M
Constant Y Y
Industry FE Y Y
First difference Y
Pseudo R2 0.010 0.018

Notes: The table reports two probit regressions of firm exit on RTS and within-industry TFP percentiles. To
facilitate comparison, both regressors are standardized to have a mean of 0 and a standard deviation of 1. Firm exit
is an indicator equal to 1 if a firm is present in the data in one year but not in the following year. Robust standard
errors are clustered at the firm level. We first-difference both regressors in column (2). ***p < 0.01, **p < 0.05,

*p < 0.1.

TABLE A.7 - Hicu RTS FirRMS RESPOND MORE TO AGGREGATE SHOCKS

Dependent Variable Ayjy

(1) 2) 3) (4) () (6)
Industry-level TFP shock Global Financial Crisis

Shock; S2.01%¥% J1.69%** L8 T0*KK (.02%*F  _0.02%FFF  _Q.57HHF
(0.13) (0.13) (0.77) (0.00) (0.00) (0.14)
RTS; 1 0.02FF*  _0.28%HFF  _(.28%FF () 02%F* 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
RT'S;—1xShock; 4.58%** 4.23%%* 4.46*F*F  0.02%**F  _0.02%**  _0.01***
(0.15)  (0.15)  (0.16)  (0.00)  (0.00)  (0.00)
Observations 3.6M 3.6M 3.6M 3.6M 3.6M 3.6M
Constant Y Y Y Y Y Y
Control:
Revenue and Age Y Y Y Y
Revenue and Age x.Shock; Y Y
R? 0.01 0.05 0.05 0.00 0.00 0.05

Notes: Robust standard errors are clustered at the firm level reported. In columns (1)-(3), we use the industry-level
change in TFP as the aggregate shock, which is calculated as the average firm-level TFP, v, for all firms in the
industry in that year. In columns (4)-(6), we use a time dummy for the 2007-2008 global financial crisis as the
aggregate shock. We control for log revenue and log firm age and the interaction between the two in columns (2)
and (5), and control for their interactions with the aggregate shock in columns (3) and (6). ***p < 0.01, **p < 0.05,
*p <O0.1.



TABLE A.8 — REGRESSION OF FIRM RTS ON SIZE: SPECIFICATION WITH CLUS-

TERING BY SIZE

Dependent Variable

RT

S

(1)

(2)

log Y} 0.012%#F*%  -0.001***
(0.000) (0.000)
Observations 2.6M 2.6M
Constant Y Y
Industry FE Y Y
Cluster FE Y

RQ

0.210

0.267

Notes: Table A.8 reports the regressions of firm RTS on log firm revenue at the firm-year level. Estimation results
are from the specification where we cluster firms by the maximum attained size (see Section .3 for more details).
Column (1) includes industry fixed effects, and column (2) further includes cluster fixed effects. ***p < 0.01,

**p < 0.05, *p < 0.1.

FI1GURE A.1 — ESTIMATED MARKUPS AND FIRM REVENUE
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Notes: Figure A.1 presents estimated markups across the firm-size distribution. We report estimates based on the
value-added translog production function approach following De Loecker and Warzynski (2012) (DLW) and those
obtained using the Demirer method (Demirer, 2020). In both cases, production functions are estimated separately
by industry. Firms are sorted by their within-industry revenue ranks, and the figure plots the average markup within
ranks. Markups are demeaned relative to the industry average.



FIGURE A.2 — RTS AND OUTPUT ELASTICITIES FOR CANADA AND THE US

(A) Returns to Scale

(B) Intermediate Inputs
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Notes: Figure A.2 shows returns to scale and output elasticities for the US manufacturing sector, for the Canadian
private sector, and for the Canadian manufacturing sector. In all figures, we sort firms by within-industry revenue
ranks and plot the average within ranks. Panel A shows the returns to scale relative to the industry average.
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Average Returns to Scale

FIGURE A.3 — RESULTS BY EMPLOYMENT AND VALUE ADDED

(A) RTS and Employment
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(c) Elasticities and Employment
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Notes: Figure A.3 shows results sorting firms by within-industry employment ranks (left panels) and within-industry
value added ranks (right panels). We use the intermediate input and labor costs and the value of the capital stock to
construct the revenue shares.
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FIGURE A.4 — INPUT REVENUE SHARES ACROSS THE FIRM REVENUE DISTRIBUTION

(A) Canada Economy

(B) Canada Manufacturing

(¢) US Manufacturing
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Notes: Figure A.4 shows revenue shares across the firm-size distribution for Canada and for the US manufacturing
sector. In each plot, we sort firms by within-industry revenue ranks and then average the revenue share across all
firms within corresponding percentiles. We use the intermediate input and labor costs and the value of the capital
stock to construct the revenue shares. Results for Canada are presented in ventiles.

FIGURE A.5 — PROFITS AND RETURNS TO SCALE
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Notes: Figure A.5 plots the relationship between the returns to scale and the ratio of EBITA-revenue ratio. EBITA
is computed as total revenue net of intermediate inputs and labor costs. Both variables are demeaned at the industry

level.
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FIGURE A.6 — RTS AND TFP ESTIMATES FOR Toprp 10% FIRMS
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Notes: Figure A.6 plots the RTS and TFP estimates against the firm sales percentile for the top 10% firms. In both
panels, we sort firms by within-industry revenue ranks and plot the average within ranks. Panel A shows the returns
to scale relative to the industry average. Panel B shows the TFP percentile calculated within each industry.

FIGURE A.7 — RTS AND THE NUMBER OF ESTABLISHMENTS
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Notes: Figure A.7 plots the average RTS for eight groups of firms with a different number of establishments. RT'S is
demeaned at the industry level.
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FIGURE A.8 — ROBUSTNESS: TFP PERCENTILE ACROSS THE FIRM REVENUE
DisTrRIBUTION, COBB-DOUGLAS PRODUCTION FUNCTION
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Notes: We re-estimate a Cobb-Douglas production function for each industry. We plot the relationship between TFP
percentile and revenue percentile. Both TFP and revenue percentiles are calculated within industry.

FIGURE A.9 — ROBUSTNESS: RTS ACROSS THE FIRM REVENUE DISTRIBUTION,
CLUSTERED BY MAXIMUM SIZE

Average Returns to Scale

o Cluster 1 A Cluster 2
< Cluster 3 O Cluster 4
O Cluster 5 A Cluster 6
@ Cluster 7 ® Cluster 8 *
05 ® Cluster 9 A Cluster 10 ".
’ @ Cluster 11
° A
| [} xA
0 o A < * u ® ° A
1 o & o, oo A
<o oB o o ® °
o A o |o oy © AV NIUN A
o A 5
a]
o <
-.057
A
T T T T T T
0 20 40 60 80 100

Within-Industry Percentiles of the Sales Distribution

Notes: Figure A.9 shows estimated average RTS when firms are clustered by maximum size. We cluster firms within
each industry into 11 groups based on each firm’s maximized within-industry-year revenue percentile throughout its
life cycle. We exclude firms with fewer than 10 years of data and estimate the nonparametric production function
separately for each cluster and industry. We pool all observations of firms that belong to the same cluster across in-
dustries. Then, we plot, for each cluster separately, the demeaned RTS against the within-industry revenue percentile.
Each dot in the figure represents 20% of all the firm-year observations in one cluster.
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FIGURE A.10 — ROBUSTNESS: ESTIMATION OF INTERMEDIATE INPUT ELASTIC-
ITY, CONTROLLING FOR MARKET SHARES
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Notes: Figure A.10 presents the intermediate input elasticity estimates from a specification that controls for
firm market shares (as proxy for market power), compared to the benchmark estimates. Specifically, we run
Sit = ln(D‘g (Kje, e, mge)) + le?t + 72 (x%’t)2 + 73 (acgt)S — €j¢, where J:?t represents firm #’s revenue share in its
industry at time ¢. We instrument the market share using its one-period lags. We note that the intercept coefficient
of the regression contains information on both the average intermediate elasticity and the average markup, and we
cannot separately identify these two components. We thus normalize the median intermediate elasticity to one for
both versions of the estimates and plot the normalized elasticities across the firm-size distribution.
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C Data Appendix

We describe the construction of variables and sample selection for our main dataset
of Canadian corporations, as well as for the U.S. manufacturing data from the Census

and the international firm-level data from Orbis.

C.1 Canadian Administrative Data
C.1.1 Variable Construction

Revenue We use the revenue measure that is computed by Statistics Canada for
constructing the National Account. This measure is derived by summing up relevant

terms from the T2 Corporate Income Tax Return Form.

Labor: We use the total worker compensation, which is also computed by Statistics
Canada for constructing the National Account. This measure includes wages, salaries,

and commissions paid to all the workers employed within a year.

Capital: We employ the perpetual-inventory method (PIM) to construct the capital
stock. We make use of information on the first book value of tangible capital observed
in the dataset, annual tangible capital investment, and amortization. Specifically, the
capital stock K of firm 7 in year ¢ is computed as K, ; = K, ;_1+Invest; ;—Amort; ;, t >
t?, where ¥ is the first year we observe the book value of the tangible capital of firm i.
The initial year capital stock K is calculated as the book value of tangible capital net
of accumulated tangible capital amortization. Tangible investment includes invest-
ments in building and land, computers, and machines and equipment. In addition,
we construct a capital stock measure that includes intangible capital. We also follow
the PIM for intangibles and make use of information on the book value of intangible

capital, annual intangible capital investment, and amortization.

Intermediates: We measure intermediate inputs as the total expenses not related
to capital and labor. Specifically, the measure is computed as the sum of operating

expenses and costs of goods sold net of capital amortization. The operating expenses
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and costs of good sold variables are also constructed by Statistics Canada to replicate

the National Account, and neither of them encompasses worker compensation.

Firm owner and wealth information: We obtain ownership information from
the Schedule 50 Shareholder Information of T2 Corporate Tax Files. Schedule 50
provides information of the filing firms on their shareholders with at least 10% of
shares, the percentage of shares owned by each shareholder, and the type of shares
owned (common or preferred). Statistics Canada tracks chained ownership by indi-
viduals (e.g., individual A owns a share of firm B, and firm B owns a share of firm
C) and constructs a tracked share of ownership of firms by each ultimate individ-
ual shareholder. We merge the ownership information with the firm panel dataset
and calculate total individual equity wealth as the ownership share weighted sum of
the value of all holding firms. Firm value is calculated as total assets net of total

liabilities.

Linked employer-employee information: We obtain linked employer-employee
and earnings information from the T4 Statement of Remuneration Paid form. The T4
files provide job-level earnings information with individual and firm identifiers, where
a job is defined as a worker-firm pairing. A worker can have multiple T4 records in
a year if she works for more than one firm. For multiple job holders, we keep the job
that offers the highest earnings of the year and call it the main job. In addition, we

drop workers with annual earnings from the main job that are lower than 5,000 CAD.

C.1.2 Sample Selection

Several steps are taken to construct the estimation sample. First, we drop firms with
missing industry information. Second, we exclude the initial year in which a firm’s
book value of tangible capital is observed, along with all prior observations, as we
cannot use the PIM to construct the capital stock for these observations. Third, we
drop firm-year observations with missing and nonpositive revenue, labor, capital, and
intermediate input values. We further drop the observations whose one-year lagged
revenue or inputs are missing or non-positive, as our identification strategy requires

using lagged labor input as the instrument. Fourth, we drop the observations with
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extreme factor shares, that is, the ones with a ratio of wage-bill-to-revenue below the
1st percentile or above the 99th percentile, with a ratio of wage bill-to-value-added
below the 1st percentile or above the 99th percentile, with a ratio of intermediate-
input-to-revenue above 0.95 or below 0.05, and with a ratio of capital-stock-to-revenue
above the 99.9th percentile. This sample selection procedure leaves us with around 4.3
million firm-year observations. We convert all monetary variables to 2002 Canadian

dollars.

C.2 US Census and Survey of Manufacturing

Here we describe the sample selection and moment construction using data from the
US Census of Manufacturing (CM) and the Survey of Manufacturing firms (ASM).
The CM, which is part of the Economic Census, is conducted every five years, in every
year ending in 2 or 7, and was first implemented in 1963. It covers all establishments
with at least one paid employee in the manufacturing sector (NAICS 31-33) for a
total sample between 300,000 and 400,000 establishments per Census. Information
is delivered by firms at the establishment level, and the Census provides a unique
identifier (Ibdnum) which we use to follow establishments over time. The CM provides
information on Employment, Payroll, Value of Shipments, Costs of Material, and
Inventories. It also provides information on investment in machinery, equipment, and
structures. Furthermore, it contains information on the location of the establishment
(state and county), and industry classification (NAICS).

The Census Bureau complements the CM data with the ASM every year the
Economic Census is not conducted since 1973. Relative to the CM, the ASM is
skewed towards large firms as it covers all establishments of firms considered by the
CM above a certain threshold, and a smaller sample of small and medium sized firms.
The number of observations in the raw data is around 50,000 establishments per year.
The merged CM/ASM dataset contains consistent information on industry, sales,
employment, capital expenditures, materials, and others. Beyond the information
available in the CM, the ASM also contains information on R&D expenditures, and
measures of capacity utilization, and capital investment, which is used by the Census
to calculate the real value of capital stock using the PIM method.

We access the US Census information through the Census RDC. All results pre-
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sented in this paper have been approved by the US Census and do not reveal any
firm-level information. Our starting base is the panel data available in the ASM. We
impose similar selection criteria as we do with the data from Canada. In particular,
we select establishment-year observations with non missing values in real value of
shipments (revenue), the real wage bill of workers in the establishment (labor), the
real expenditure in intermediate inputs and materials (intermediates), and the real
value of the capital stock (capital) which is calculated by the Census using PIM. All
nominal values are deflated to 2018 prices. We then calculate the revenue shares of
each of these components, and we drop observations below the 0.1 and above the
99.9th percentiles within each distribution. Finally, since our estimation method re-
lies on lagged input values, we drop the first two observations of each establishment in
our dataset. This sample selection generates a panel of 3.1 million establishment-year

observations.

C.3 International Evidence from ORBIS

In this appendix, we provide additional details for the construction of our measure of
firm-level TFP using data from Orbis. Moody’s Orbis (formerly Bureau van Dijk’s
Orbis) is a large firm-level dataset providing harmonized information on private and
public firms across several countries. It aggregates and standardizes data from thou-
sands of sources—national registries, regulatory filings, rating agencies, and press
releases—into a single dataset. In our analysis, we use information for European coun-
tries (the subsample called Amadeus) containing over 150 million public and private
European companies. Our sample contains information from the early 1990 to 2019
with substantially better coverage starting in 2005. See Kalemli-Ozcan et al. (2024)
for additional details about constructing a representative dataset using Moody’s Orbis
data.

We consider 11 countries in our analysis including Finland, France, Germany,
Hungary, Italy, Norway, Poland, Portugal, Spain, Sweden, and Ukraine, for which
firm-level information is available for enough industries and sectors. For each country
in the sample, we retrieve firm-level panel data from Amadeus through WRDS. Our
data contains a large range of firms, from small to very large firms (the V+L+M+S:
plus Small Companies dataset), both publicly traded and privately held. Revenues are
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measured by sales (TURN); if sales data are unavailable, we use operating revenues
(OPRE). Intermediate input costs are captured by material expenses (MATE), while
the value of the capital stock is taken from total fixed assets (FIAS). Labor costs
are measured using the firm’s wage bill, as reported in cost of employees (STAF).
Firms are classified according to two-digit NAICS industry codes, and all financial
variables denominated in local currency are converted to euros using the exchange
rate provided by Orbis (EXCHANGE2).

In order to estimate firm-level productivity for a large number of firms within each
country, we perform a simple sample selection. For each country, we drop duplicates,
observations without information on industry (NAICS), and firms with discrepancies
between the country identifier and the firm identifier (INDR). We also drop all ob-
servations with missing, zero, or negative values in either of the following variables:
OPRE, MATE, FIAS, and STAF. All monetary values are transformed to Euros using
the exchange rate supplied by Moody’s and deflated by country-specific CPI to 2019
prices (obtained from the World Bank’ s WDI database).

After sample selection, our sample contains about 16.9 million country-firm-year
observations, with Spain (3.8M), France (4.3M), and Italy (3.5M) having the largest
samples. Then, for each country, we estimate industry-level production functions
(NAICS2 industries) using the GNR method and the method developed by Demirer
(2020).

Table A.10 shows cross-sectional moments of the (log) revenue distribution, in-
termediate inputs, wage bill, and capital stock, all in real terms. Table A.10 shows
unconditional cross-sectional moments of the distribution of revenue shares and out-
put elasticity estimates within each country estimated using the GNR method. Sim-
ilarly to our results based on administrative data from Canada and the US, there
is significant within country-industry dispersion in revenue shares (columns 1 to 3)
and therefore in input elasticities (columns 4 to 6). Column 7 shows cross-sectional
moments of the distribution of RTS that displays large dispersion as well, with P90-
P10 of around 8 percentage points across countries. This is similar to the within
country-industry differences in RTS across the firm-size distribution as shown in the
main text. Importantly, and similarly to our baseline results, the increase in RTS

along the firm size distribution is driven by an increase in the output elasticity of
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intermediate inputs, as show in Figure A.11. Figure A.12 shows that these findings
are robust to applying the Demirer method.

FIGURE A.11 — INTERMEDIATE INPUT ELASTICITY INCREASES WITH FIRM SIZE
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Notes: Figure A.11 shows the difference between the average intermediate input elasticity among firms in the top
5% of the within country-industry-year revenue distribution and the average at the bottom 50% percent. Results

calculated using the GNR method.
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FIGURE A.12 — RTS AND INTERMEDIATE INPUT ELASTICITY USING DEMIRER (2020)
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Notes: Figure A.12 shows the difference between the average intermediate input elasticity among firms in the top
5% of the within country-industry-year revenue distribution and the average at the bottom 50% percent. Results

calculated using the Demirer method.
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TABLE A.9 — CROSS-SECTIONAL MOMENTS OF TFP DISTRIBUTION BY COUNTRY

Country  SD P10 P50 P90

Germany 0.38 —0.37 —-0.02 0.42
Denmark 0.39 —-0.41 —-0.01 0.45
Spain 0.34 —0.40 0.00 0.36
Finland  0.32 —-0.33 0.00 0.34
France 0.33 -0.35 —-0.01 0.37
Italy 0.44 —-0.44 0.00 049
Norway 0.29 —-0.29 0.00 0.28
Poland 0.43 —-0.43 —-0.01 047
Portugal 0.39 —-0.46 0.00 0.45
Sweden 0.31 -0.26 0.01 0.30
Ukraine  0.63 —0.68 —0.03 0.76

Total 0.38 —-0.40 -0.01 042

Notes: Table shows within-country cross-sectional moments of the TFP distribution calculated using GNR. TFP is
estimated within each country-industry defined as two-digit NAICS. We then demean each distribution by country-
industry and calculate within industry cross sectional moments. We then average across year-industries within a
country. Total is the grand average across all countries and years.
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TABLE A.11 — INPUT SHARES AND ELASTICITIES WITHIN COUNTRIES

Revenue Shares Elasticities and RTS

Country Stat. Obs. (1) (2) (3) (4) (5) (6) (7)
Intermediate  Labor  Capital Intermediate Labor Capital RTS

Germany  Mean 271,202 0.45 0.24 0.25 0.42 0.47 0.06 0.96
P10 0.13 0.06 0.01 0.14 0.21 0.01 0.88

P50 0.43 0.22 0.08 0.39 0.49 0.05 0.96

P90 0.79 0.46 0.58 0.74 0.70 0.12 1.00

Denmark  Mean 26,057 0.55 0.34 1.80 0.51 0.42 0.082 1.00
P10 0.20 0.06 0.01 0.23 0.13 —0.05 0.82

P50 0.57 0.27 0.11 0.50 0.42 0.03 1.00

P90 0.87 0.67 6.20 0.83 0.73 0.32 1.20

Spain Mean 3,833,412 0.48 0.31 0.69 0.45 0.46 0.04 0.95
P10 0.15 0.08 0.01 0.16 0.21 0.01 0.85

P50 0.48 0.27 0.15 0.43 0.47 0.04 0.95

P90 0.79 0.57 1.30 0.76 0.69 0.07 1.00

Finland Mean 563,541 0.37 0.29 0.32 0.34 0.50 0.08 0.91
P10 0.10 0.08 0.01 0.11 0.25 0.01 0.78

P50 0.33 0.27 0.09 0.30 0.52 0.07 0.92

P90 0.69 0.52 0.62 0.63 0.71 0.14 1.00

France Mean 4,389,186 0.39 0.28 0.14 0.37 0.49 0.06 0.92
P10 0.12 0.09 0.01 0.14 0.28 0.02 0.82

P50 0.36 0.27 0.05 0.33 0.51 0.05 0.92

P90 0.70 0.49 0.28 0.63 0.69 0.10 1.00

Italy Mean 3,492,067 0.43 0.21 0.52 0.39 0.43 0.05 0.87
P10 0.12 0.04 0.01 0.14 0.21 0.01 0.73

P50 0.41 0.18 0.09 0.36 0.45 0.05 0.89

P90 0.77 0.42 0.86 0.69 0.63 0.10 1.00

Norway Mean 575,877 0.42 0.30 0.30 0.40 0.48 0.05 0.93
P10 0.12 0.09 0.01 0.13 0.26 0.00 0.82

P50 0.41 0.29 0.05 0.37 0.50 0.04 0.94

P90 0.74 0.54 0.54 0.70 0.69 0.10 1.00

Poland Mean 546,413 0.48 0.17 0.92 0.44 0.43 0.06 0.93
P10 0.10 0.03 0.01 0.12 0.19 0.00 0.79

P50 0.49 0.12 0.12 0.41 0.43 0.05 0.95

P90 0.84 0.38 1.80 0.79 0.67 0.15 1.10

Portugal Mean 1,342,545 0.49 0.25 0.44 0.46 0.45 0.05 0.96
P10 0.15 0.07 0.01 0.17 0.21 0.01 0.88

P50 0.50 0.22 0.12 0.44 0.46 0.05 0.96

P90 0.80 0.48 0.91 0.75 0.67 0.09 1.00

Sweden Mean 949,905 0.41 0.30 0.27 0.39 0.48 0.05 0.91
P10 0.13 0.09 0.00 0.14 0.26 0.01 0.78

P50 0.39 0.29 0.05 0.36 0.49 0.04 0.92

P90 0.71 0.53 0.60 0.66 0.68 0.10 1.10

Ukraine Mean 394,734 0.40 0.30 1.90 0.30 0.60 0.10 1.00
P10 0.10 0.00 0.00 0.10 0.30 0.00 0.80

P50 0.40 0.20 0.20 0.30 0.60 0.10 1.00

P90 0.80 0.60 2.40 0.60 0.80 0.20 1.10

Total Mean 16,960,816 0.43 0.27 0.47 0.40 0.46 0.05 0.92
P10 0.12 0.06 0.01 0.14 0.23 0.01 0.80

P50 0.41 0.24 0.09 0.37 0.48 0.05 0.93

P90 0.76 0.50 0.78 0.69 0.68 0.10 1.00

Notes: Table shows within-country cross-sectional moments of the corresponding distribution. Elasticities and returns
to scale calculated using GNR applied within country-two digits NAICS industries. Firm-level revenue is either sales
or operating revenue, if sales variables is missing.
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D RTS Variance-Component Model

The RTS process has three components:

RTSZh = Q; + Zin + €,
~— ~—

permanent  AR(1)
where a; ~ N(0,02) is the fixed effect of firm 4, ey, ~ N(0,0?) is a fully transitory
i.i.d. shock at age h, and z;, is a persistent component that follows the process
Zih = P2Zih—1 T Nins Zio = 0.0,
2

o
0,2], p,0%) by targeting the autovariance matrix of firm-level

where 7;;, is an i.i.d. innovation with mean zero and variance o-. So, we estimate

2

ol

four parameters, (o
RTS. We compute the autocovariance matrix of RTS over the life cycle in levels
in the data. We then estimate these parameters by minimizing the distance between
empirical values and the corresponding simulated values. For this purpose we em-
ploy the multi-start global minimization algorithm, TikTak, which can be found at
https://github.com/serdarozkan /Tik Tak.

TABLE A.12 — Parameter Estimates

2 2

| p | o | o |
| 0.001 | 0.937 | 0.00025 | 0.00027 |
L % [ p [ ow | o ]

1 0.0319 | 0.937 | 0.0158 | 0.0165 |
Variance decomposition
RTS ‘ a ‘ € ‘ z
0.00257 | 0.001 | 0.00027 | 0.0013
1 38.9% | 10.5% | 50.6%
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https://github.com/serdarozkan/TikTak

E Model Appendix

E.1 Proof of Proposition 1

Without loss of generality, set the productivity of the unconstrained (CRTS) sector
to 1. Then, the equilibrium input price equals 1. Given 7 > 0, the input choice and

output of constrained firm ¢ are, respectively:

1 n;
/r]i.ZZ- 1*7771 _1l TIZ 1—mn;
z;(7) = (1 +T> and  y;(7) =2 " - (1 +T) '

By market clearing, the aggregate input and output of unconstrained firms both equal

1 /OX wi(r)di.

Thus, we can write the aggregate misallocation loss as

AY (1) =Y* =Y (r) = /OX (i(0) — ys(7)) di — ( /Ox i /OX wimdi)
— /OX (:(0) = ui(7)) — (24(0) — (7)) di

Lo [0 ()7 (- () )e

EE?(T)
Perform a second-order approximation of L;(7) around 7 = 0. Since L;(0) = L,(0) =0
and Lj(0) = %, it follows that L;(7) ~ %Qlfn Using the definition w; = }y%i, the

proof follows:

X 2 .
Ay (r=2Y0 1 / y;.% T i
0

2 X
:T—./ i Th dZ
2 0 1_771
2 X X .
:T—-/ w; - di i T gi
2 Jo 0 fowj-d] 1—mn
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E.2 Equilibrium Definition

We consider the stationary equilibrium of this model, which is described by a set of

prices (r, R, w) such that:

1. Agents optimize, giving rise to decision rules a'(6),c(0),0(0), k(0),€(0),y(6),
where 6 = (a, z, h,n) summarizes the individual’s state, as well as an ergodic
distribution G(9).

2. The financial intermediary maximizes profits, implying R=r+3§ —p- (1 + ).

3. Given G(6), all markets clear:

L= / h-dG(0) = 0(0) - dG(6) (labor market)
K = l%p /a -dG(0) = k() -dG(0) (capital market)
Y = /0(9) -dG(O)+0- K = y(0) - dG(0) (goods market)

E.3 Model Robustness

Here, we discuss calibration details for the extended model versions with intermediate
inputs in Section 5.2.4.
We introduce intermediate inputs as follows: an entrepreneur with technology

(1, z), and inputs capital k, labor ¢, and intermediates m, produces output

Z - kaK . éOCL . mn_OCK_aL‘

We assume a simple round-about production network, such that gross output Y is
used for consumption, investment, and intermediate inputs, ¥ = C + I + M, with
GDP=C+1.

We fix ax = 0.13 and ay, = 0.29, corresponding to our estimated mean output

elasticities.*

4These values correspond to an estimation that expanded the definition of K as total assets,
more in line with conventional macroeconomic aggregates that imply a capital share of value added
of around one-third.
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TABLE A.13 — DYNAMIC MODEL W/ INTERMEDIATES: CALIBRATION

Data Model with intermediate inputs

Constraint on K,L,LM Constraint on K,L

z-ecom. (n, z)-econ. z-econ. (n, z)-econ.
A. Targeted moments
Fraction entrepreneurs 0.117 0.117 0.121 0.116 0.116
Transition rate W—E 0.021 0.021 0.022 0.021 0.021
Top 10% revenue share 0.799 0.811 0.779 0.811 0.790
Top 1% revenue share 0.522 0.523 0.555 0.511 0.539
Top 0.1% revenue share 0.282 0.281 0.278 0.285 0.280
RTS: Top 5% vs Bottom 50%  0.083 0* 0.082 0* 0.083
Capital-output ratio 2.970 2.969 2.962 2.972 2.979
B. Internally calibrated parameters
Mean RTS fn 0.776 0.841 0.732 0.695
Standard deviation RTS on — 0.070 — 0.079
Standard Deviation TFP 0, 0.653 0.573 0.823 1.097
Persistence TFP Pz 0.971 0.948 0.970 0.950
Pareto tail TFP &, 3.944 3.557 —
Correlation (z,7) Tam — -0.712 — -0.380
Discount factor 153 0.915 0.908 0.916 0.907

Notes: Steady state calibration of the (7, z)- and z-economy (both at A = 0.3), in the model versions with intermediate
inputs (and ex-post capital choice). * not targeted.

E.3.1 Adding intermediates, ex-post capital choice as in baseline

First, we maintain the baseline timing of input choices: capital is chosen after observ-
ing the realization of shocks, as are labor and intermediate inputs. We estimate the
parameters in Table A.13 using the exact same strategy as in our baseline model ver-
sions. Rows 2 and 3 in Table A.14 show the resulting misallocation costs from raising
the financial friction A from 0 to 0.3, in both the calibration with and without RTS
heterogeneity. Row 2 contains the results from the model that imposes the financial
constraint on intermediates as well, while row 3 treats intermediates as fully flexible
in line with the assumptions of our empirical approach (only capital and labor are

subject to the constraint).

E.3.2 Adding intermediates, and pre-determined capital

Finally, we also change the timing of input choices, in addition to adding intermedi-
ate inputs in production: period ¢ capital is chosen in period £ — 1, so prior to the
realization of period t shocks. This specification is rich enough such that the identi-

fication assumptions of GNR hold. The computation becomes more involved, as an

28



TABLE A.14 — MISALLOCATION: DIFFERENT ASSUMPTIONS ON PRODUCTION

z-economy (1, z)-economy  Amplification

1. Baseline: no intermediate inputs (M) 5.0 10.6 +112%
Including intermediates inputs (M):

2. Constraint on K,L,M 9.3 46.3 +398%
3. Constraint on K,L 3.6 11.3 +214%
4. Constraint on K,L; pre-determined K 1.0 1.9 +81%

Notes: This table reports static misallocation from the financial friction A, in log points, in alternative model versions
(lowering A from 0.3 to 0 when holding fixed occupational choice and factor supply). Row 1 corresponds to the baseline
model without intermediate inputs. Rows 2, 3, and 4 add intermediate inputs in the production function. In row 2,

there is a symmetric constraint on the three production factors: w- ¢+ R-k+m < % In row 3 and 4, intermediate

inputs are assumed to be fully flexible: w-£+ R -k < % In row 4, period t capital is chosen in period ¢t — 1, prior to
the realization of period ¢ shocks.

agent’s inter-temporal choice includes (i) net savings a’, (ii) capital k' (part of net
savings), (iii) and occupation o’. In our numerical solution, we exploit that when us-
ing resources after production z (“cash-on-hand”) as endogenous state variable, there
is no need to keep track of the two assets separately; instead, the problem becomes
a portfolio choice problem conditional on occupational choice. The agent’s dynamic
problem is:
V(z,h,z,n) = BN L P u(e) + B -E[V (), (a K W, 2 n), W, 2 ')
st. c+ad =u,
zwl(a,k,h,z,n)=w-h+(14+r)-a—R-Fk,
xp(a,k,h,z,n) =x(a,k,z,n)+(14+7r)-a— Rk,

where zy (xg) denotes cash-on-hand of workers (entrepreneurs),” and the variable

profit of entrepreneurs is given by

mw(a,k,z,m) = max z-k% A . .mITOKTL —qp . —m
>0,m>0
st.w-(+R-k<T.

This formulation is the natural extension of our general setup to pre-determined cap-
ital. The financial constraint applies to capital and labor, for every shock realization.
The interpretation is, as before, that a fraction A of the expenditures on capital R - k;

and labor w - ¢; required for production in period ¢ need to be financed with the

5Prospective workers will always optimally set the capital choice to zero, k' = 0.
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TABLE A.15 — DYNAMIC MODEL W/ PRE-DETERMINED CAPITAL: CALIBRATION

Data Model
z-economy (1, z)-economy

A. Targeted moments

Fraction entrepreneurs 0.117 0.117 0.129
Transition rate W—E 0.021 0.021 0.021
Top 10% revenue share 0.799 0.812 0.827
Top 1% revenue share 0.522 0.504 0.544
Top 0.1% revenue share 0.282 0.287 0.284
RTS: Top 5% vs Bottom 50%  0.083 0* 0.081
Capital-output ratio 2.970 2.970 2.969
B. Internally calibrated parameters

Mean RTS i 0.703 0.632
Standard deviation RTS oy — 0.063
Standard Deviation TFP o, 0.968 1.171
Persistence TFP 0z 0.967 0.958
Pareto tail TFP &, 3.350 —
Correlation (z,7) Oz — -0.103
Discount factor 153 0.905 0.906

Notes: Steady state calibration of the (), z)- and z-economy (both at A = 0.3), in the model versions with intermediate
inputs, pre-determined capital choice, and the financial constraint imposed on labor and capital expenditures (not on
intermediates). * not targeted.

owner’s period t net wealth, a;. The difference to before is that capital k; is chosen
before the realization of period t shocks, while the labor choice ¢; is made (as before)
after observing current shocks.

Table A.15 displays the calibration, following again the same strategy as in the
previously discussed model versions. Row 4 of Table A.14 shows the resulting static
misallocation costs from raising the financial friction A from 0 to 0.3. The overall level
of static misallocation associated with A is now much smaller, because capital is still
chosen ex-ante, and so even with A = 0, marginal products of capital are not equalized.
Instead, eliminating the A friction only removes dispersion in marginal labor input
products (intermediates are fully flexible, and hence marginal intermediate input
products are fully equalized, regardless of the value of \). We re-iterate that our main
point is not the overall level of misallocation associated with financial frictions, but
rather the additional amount of misallocation (+81% in this model version) generated

by allowing for realistic RT'S heterogeneity in line with our empirical results.
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